

Department of Transportation

Metro Manila Subway Project (MMSP) Phase 1

Environmental Performance Report and Monitoring Plan

Volume 1 Main Report

Project Number: MNLD19050 Document Number: R19-17 10 July 2019

Quality information	l				
Prepared by		Checked by		Approved	by
AECOM EIA Team		Richard Andal / I	Kathleen Anne Cruz	Alfred Lalu	
Revision History					
Revision Revi	ision date	Details	Authorized	Name	Position
Distribution List # Hard Copies PDF	' Required	Association / Co	ompany Name		

Prepared for:

Department of Transportation Sergio Osmeña Road, Clark Freeport Mabalacat, Pampanga

Prepared by:

AECOM Philippines Inc. 14th Floor, Bonifacio Stopover Corporate Center 2nd Ave. corner of 31st St., Bonifacio Global City, Fort Bonifacio, Taguig City, Philippines 1634 www.aecom.com

© 2019 AECOM Philippines, Inc. All Rights Reserved.

This document has been prepared by AECOM Philippines Consultants Corp. ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

EXECUTIVE SUMMARY	1
Project Fact Sheet	1
EIA Process Documentation	3
EIA Summary	11
INTRODUCTION.	
Background	
Proponent	
EPRMP Report Structure	

No table of figures entries found.

EXECUTIVE SUMMARY

Project Fact Sheet

About the Project

The Department of Transportation (DOTr) in partnership with the Japan International Cooperation Agency (JICA) is proposing to construct the Metro Manila Subway Project (MMSP). This railway project is part of the Build Build Build Program of the current Philippine administration. This project has a total alignment length of 36 km running from its proposed depot Valenzuela City and to the proposed NAIA Terminal 3 Station and the interoperability area between the proposed FTI station and the Bicutan PNR Station. The project was given its Environmental Compliance Certificate (ECC) last October of 2017, **Annex ES.1-1**. How ever, due to a fault line discovered near the Cay etano Station, the alignment was shifted away from the fault line and thus was required to amend its ECC.

Including the additional components, the MMSP covers the following key components:

- Fifteen (15) subway stations including their corresponding;
 - o Construction yards; and
 - Shield machine bases
- Underground sections in-between the stations;
- Valenzuela Depot;
- Interoperability area between FTI Station and Bicutan PNR Station; and
- Interconnections such as walkways, public utility vehicle (PUV) bays, etc.

The additional key components:

- Three (3) new subway stations;
 - o Law ton East, Law ton West and NAIA Terminal 3 Stations
- The underground tunnels in-between the new stations; and
- The interoperability area between FTI Station and Bicutan PNR Station.

Name of the Project

Metro Manila Subway Project (MMSP) Phase 1

Project Proponent

Department of Transportation (DOTr)

Project Locations

Valenzuela City

Barangay Ugong

Makati City

Barangay East Rembo

Taguig City

- Barangay Fort Bonifacio
- Barangay Western Bicutan

Quezon City

- Barangay Talipapa
- Barangay Tandang Sora
- Barangay Bagong Pagasa
- Brgy . Project 6
- Barangay Pinyahan
- Barangay Bagumbuhay
- Barangay Blueridge A
- Barangay St. Ignatius

Pasig City

- Barangay Ugong
- Barangay San Antonio
- Barangay Oranbo
- Barangay Kapitoly o

Pasay City

• Barangay 183

Parañaque City

- Barangay San Martin de Porres
- Barangay Mervile

- Barangay Bayanihan
- Barangay White Plains
- Barangay Santo Cristo
- Barangay Tandang Sora
- Barangay Malaya
- Barangay Sikatuna Village
- Barangay East Kamias
- Barangay Quirino 2A
- Barangay Quirino 3A
- Barangay Milagrosa
- Barangay Project 6

Nature of the Project

Railway Project with Depot

Total Alignment Length

36 km

Previous ECC

ECC CO 1709-0017 (Issued: 25 October 2017)

Project Components					
Retained Old Alignment Components		New	New Alignment Components		
Valenzuela Depo	Valenzuela Depot		Kalay aan Station		
Quirino Highw ay	Station		0	Underground Tunnel Between Kalay aan Station and	
o Undergrou	nd Tunnel Between Quirino Highway Station			Bonifacio Global City Station	
and Tanda	ng Sora Station	•	Boni	facio Global City Station	
Tandang Sora S	tation		0	Includes the construction yards and shield machine	
o Undergrou	nd Tunnel Between Tandang Sora Station and			bases for the aforementioned stations and	
North Ave	nue Station			underground tunnels	
North Avenue St	ation		0	Underground Tunnel Between Bonifacio Global City	
 Undergrou 	nd Tunnel Between North Avenue Station and			Station and Lawton East Station	
Quezon Avenue Station		•	Law	ton East Station	
Quezon Avenue	Station		0	Underground Tunnel Between Law ton East Station	
 Undergrou 	nd Tunnel Between Quezon Avenue Station			and Law ton West Station	
and East A	w enue Station	•	Law	ton West Station	
• East Avenue Sta	tion		0	Underground Tunnel Between Lawton West Station	
o Undergrou	nd Tunnel Between East Avenue Station and			and FTI Station	
Anonas St	ation		0	Underground Tunnel Between Lawton West Station	
Anonas Station				and NAIA Terminal 3 Station	
o Undergrou	nd Tunnel Between Anonas Station and	•	NAI	A Terminal 3 Station (Two Alignment Options for this	
Katipunan	Station		Stati	on)	

- Katipunan Station
 - Underground Tunnel Between Katipunan Station and Ortigas North Station
- Ortigas North Station
 - Underground Tunnel Between Ortigas North Station and Ortigas South Station
- Ortigas South Station
 - Underground Tunnel Between Ortigas South Station and Kalay aan Station

Indicative Project Cost

PhP 356,964.17 Million

Proponent Address

Sergio Osmeña Road, Clark Freeport, Mabalabat, Pampanga

Proponent Representative

Atty. Arthur P. Tugade, DOTr Secretary

Proponent Contact Details

(632) 790-8300

EIA Process Documentation

Process Brief

The ECC amendment and the EIA process undergone for the MMSP was conducted in accordance with Philippine EIA legislation:

- Presidential Decree 1586 (PD 1586)
- DENR Administrative Order No. 15 Series of 2017 (DAO 2017-15)
- DENR Administrative Order No. 30 Series of 2003 (DAO 2003-30)
- DENR Administrative Order No. 09 Series of 2001 (DAO 2001-09)
- EMB Memorandum Circular No. 005 Series of 2014 (EMB MC 2014-005)
- EMB Memorandum Circular No. 002 Series of 2010 (EMB MC 2010-002)

Based on the project screening guideline in EMB MC 2014-005, the proposed project is an Environmentally Critical Project that is located in a non-Environmentally Critical Area. The amendment of the ECC of the MMSP will require the conduct of an Environmental Performance Report and Monitoring Plan (EPRMP) and its submission to Environmental Management Bureau – Central Office (EMB-CO)

EIA Preparer

AECOM Philippines Inc.

- FTI Station
 - Alignment Between FTI Station and Bicutan PNR Station for interoperability with the North South Commuter Railway (NSCR) Project
- Includes the construction yards and shield machine bases for the aforementioned stations and underground tunnels

Study Team Composition			
Role/Specialization	Name	EIA Preparer Registration No.	
Project Director/EIA Specialist/Peer Reviewer	Kathleen Anne Cruz	IPCO-164	
Project Manager/Team Leader/EIA Specialist	Richard Andal	IPCO-158	
Deputy Team Leader/Water Quality Specialist/EIA Specialist	Danielle Danica Solis		
Geologist/Geohazard Specialist	Allan Mandanas	IPCO-145	
Terrestrial Wildlife Specialist/Terrestrial Ecology Lead	Michael de Guia	IPCO-272	
Terrestrial Vegetation Specialist/ Aquatic Ecology Specialist	Danielle Dominique Deborde		
Hydrologist	Rene Cruz		
Air Quality Specialist, GHG, Climate Change Specialist	Aquinas Hyacinth Toledo	IPCO-144	
Noise Specialist	Rosette Kassandra Dumat-ol		
Vibration Specialist	Chun Hin Neo Cheung		
Traffic Impact Assessment Specialist/Cost Benefit Analysis Specialist	Jedd Carlo Ugay		
Traffic Impact Assessment Specialist/Cost Benefit Analysis Specialist	Jecco Louie Dela Cruz		
Socio-Economics Specialist/Social Impact Assessment Specialist	Wilfrido Palarca		
Environmental Risk Assessment Specialist	Richard Andal	IPCO-158	

EIA Study Schedule

EIA Schedule 2017

Activity	Schedule	Venue / Area		
Field studies				
Site survey	January to July 2017	Entire MMSP alignment		
Landscape survey	May 5, 2017	Depot site in Brgy. Ugong, Valenzuela		
Flora survey	April 28, July 5-18	Depot site in Brgy. Ugong, Valenzuela and all proposed		
		stations		
Ground vibration measurements	March 27 – May 4, 2017	MMSP alignment locations		
Surface water quality sampling	March 1, 2017	All rivers along the MMSP alignment		
Ambient air quality sampling	Dry season (March 27 – May 3,	MMSP alignment locations		
	2017)			
	Wet season (July 10 – 27, 2017)			
Noise measurements	March 27 – May 3, 2017 and July	MMSP alignment locations		
	10 – 27, 2017			
Historical/Cultural heritage	May 18, 2017	BGC, Taguig City		
Consultation ¹				
IEC meetings with LGUs for pre-scoping	December 6, 2016 – March 18,	Quezon City, Caloocan City, Valenzuela City, Taguig		
activity to introduce MMSP	2017	City, Makati City, Pasig City and Parañaque City		

¹ Full details included in Annex ES.1-1

-

Stakeholders' consultation meetings for	March 9 – April 17, 2017	Makati City , Taguig City , Pasig City , Quezon City ,
environmental consideration and public		Parañaque City and Valenzuela City
scoping		
Public consultation for RAP	May 15 – 24, 2017	San Antonio, Blue Ridge, Bagumbuhay, Pinyahan, St.
		lgnatius, Talipapa, Tandang Sora
	April 18 – May 2, 2017	Quezon City, Makati City, Parañaque City, Pasig City,
		Taguig City, Valenzuela City
	June 5 – July 21, 2017	Bagumbuhay, Bayanihan, Blueridge, Kapitolyo,
		Merville, Oranbo, San Antonio, St Ignatius, Ugong,
		Bagong, Pinyahan, West Rembo, Quezon City, Makati
		City , Parañaque City , Pasig City , Taguig City ,
		Valenzuela City
Public Hearings		
Public hearing – Pasig City, Makati City,	Sept 5, 2017	10th Flr. Kalay aan Hall, SM Aura Office Tower, Taguig
Taguig City and Parañaque City		City
Public hearing – Quezon City	Sept 6, 2017	3rd Flr., EPWMD Conference Room, Quezon City Hall
Public hearing – Valenzuela City	Sept 7, 2017	Roliing Hills Resort, Brgy. Ugong, Valenzuela City
ECC Granted	October 25, 2017	DENR- EMB Central Office

EIA Schedule 2019

Activity	Schedule	Venue / Area
Consultation		
IEC activities – Stakeholder	October 8 – 9, 2018	Training Room, Action Center, Brgy. Dalandanan,
consultation meetings		Valenzuela City
IEC activities - social preparation	May 16 – June 3, 2019	City Planning of Taguig, City Planning and Engineering of
and scoping activities		Pasay, Pasay Barangay 183, City Planning of Parañaque,
		Taguig Barangays (Bicutan and Fort Bonifacio) and
		Parañaque Barangays (San Martin De Porres)
Perception surveys	May 30 and June 4, 2019	Pasay City, Taguig City and Parañaque City
Public Scoping	July 1, 2019	Covered courts of United Hills Village, corner of Atis St.
		and Narra St, Parañaque
Technical Scoping	July 17, 2019	EMB Central Office
Field studies		
Ambient air quality and noise	June 20-23, 2019	NAIA Terminal 3, Sitio Fort Bonifacio Health Center and Dr
sampling		Arcadio Santos National High School
Wildlife surveys	June 29 – 30 and July 6 – 7, 2019	Bonifacio Global City, Law ton West and East and FTI
Perception surveys	May 30-31 and June 3, 2019	Barangay 183, Villamor (Pasay City), Barangay Fort
		Bonifacio (Taguig City) and Barangay San Martin de
		Porres (SMDP) (Parañaque City)
Vegetation surveys	June 18 – 20 and July 21, 2019	Bonifacio Global City, Law ton West and East and FTI

Traffic surveys	July 5 and July 8, 2019	NAIA Terminal 3 and FTI	
Vibration surveys	July 4–7, 2019	Shrine of St. Therese of the Child Jesus, American Manila	
		Cemetery and Administration building of United Hill Village	
Technical Scoping	July 16, 2019	DENR – EMB Central Office	
Submission of EPRMP to DENR for	July 26, 2019	DENR – EMB Central Office	
Procedural Screening			
Public Hearings			
Public Hearing – Taguig City	August 30, 2019 (AM)	Taguig	
Public Hearing – Pasay City	August 30, 2019 (PM)	Pasay	
Public Hearing - Parañaque City	September 2, 2019	Parañaque	
ECC completion	September 30, 2019	DNER – EMB Central Office	

Study Area

This EPRMP will assess the environmental impacts and mitigations of the project throughout its 36 km alignment. However, particular focus will be given to the new shifted alignment. The succeeding presents a summary of the project components and the new components resulting from the shifting of the alignment.

As a whole, the alignment MMSP covers the following key components:

- Fifteen (15) subway stations including their corresponding; •
 - Construction yards; and 0
 - Shield machine bases 0
- Underground sections in-between the stations;
- Valenzuela Depot;
- Interoperability area between FTI Station and Bicutan PNR Station; and
- Interconnections such as walkways, public utility vehicle (PUV) bays, etc.

EIA Methodology

The methodologies employed for the EIA are in accordance with the study guidelines stated in the Procedural Manual for DAO 2003-30 and t

the requirements set forth by the EIA Review Committ	ee during the Technical Scoping	Meeting for the ECC application process.
--	---------------------------------	--

Module	Methodology	Source of Information / Data
Land Use and	Review and analysis of secondary data on	Comprehensive Land Use Plans
Classification	land use of the proposed project area	
	Georeferenced, digitized, generate and	Open Source Satellite imageries (Google Earth,
	overlaid on Project Development using	Open Street Map)
	Geographic Information System and	
	ground truthing. Extract lad cover data	
	using GIS	

Geology , Geomorphology and Geomorphology	Assessment of geohazard susceptibility using secondary data, slope gradient analy sis v ia ArcMap (v .10) software and historical earthquake records Rev iew of historical geology of the project	 Academic studies and reports from the Philippine Institute of Volcanology and SEPRMPmology (PHIVOLCS) Geological Hazard Maps released by PHIVOLCS, Mines and Geoscience Bureau (GMB) and National Operational Assessment of Hazards of the University of the Philippines. National Mapping Resource Information
	area	Administration (NAMRIA) base maps
Pedology	Review and analy sis of secondary data on soil types of the proposed project area	 Env ironmental Performance Report and Monitoring Plan(EPRMP) for Metro Manila Subw ay Project (MMSP; Phase 1) Carating, R., Galanta, R., & Bacatio, C. (2014). <i>The</i> <i>Soils of the Philippines</i>. (A. Hartemink, Ed.)
		 Madison, Wisconsin, USA: Springer. BSWM. (2019, July). Soil types of the Philippines. (B. o. Management, Producer) Retriev ed from Geoportal Philippines: http://www.geoportal.gov.ph/
Terrestrial Ecology	Review and analysis of secondary data on terrestrial ecology of the proposed project area	Env ironmental Performance Report and Monitoring Plan(EPRMP) for Metro Manila Subw ay Project (MMSP; Phase 1)
	Transect walk and walk-through survey Density, frequency and dominance calculation	 DENR Administrativ e Order No. 2017 – 11; Updated National List of Threatened Philippine Plants and Their Categories Republic of the Philippines - Congress of the Philippines. Wildlife Act – Republic Act No. 9147 (2001). Metro Manila. International Union for Conservation of Nature (IUCN) Red List of Threatened Species 2019 AECOM. 2018 Rapid Site Assessment of Filinvest City as Part of LEED Accreditation Process. Bajarias, A. (2016). A Field Guide to Flight: Identifying Birds on Three School Grounds (pp. 1- 142). Quezon City: Ateneo de Manila University Press.

			 Birds of the Philippines - Ay ala Alabang Birds. Retriev ed 25 July 2019, from https://www.tonjiandsy/viasbirdlist.com/Birds-By- Location/Ay ala-Alabang-Birds/ Cuy egkeng, A., Fav is, A., Gotangco, K., & Tan, M. (2014). Ateneo de Manila University Sustainability
			 Report - July 2014. de Guia, M. 2018 (unpublished). Bird Watching Observations near the northern perimeter fence of Forbes Park
			 The Convention on International Trade of Endangered Species of Flora and Fauna CITES. (2019). Retrieved 25 July 2019, from https://www.cites.org/eng/disc/species.php
			 Vallejo, B., Aloya, A., Ong, P., Tamino, A., & Villasper, J. (2008). Spatial Patterns of Bird Diversity and Abundance in an Urban Tropical Landscape: The University of the Philippines (UP) Diliman Campus. Science Diliman, 20(1), 1-10.
Hy drology Hy drogeology	and	Review of secondary hydrologic data	 Hy dro-meteorological and hy drological monitoring data from the Philippine Atmospheric, Geophy sical and Astronomical Serv ices Administration (PAGASA);
			 Groundwater availability map from Mines and Geosciences Bureau (MGB);
			• Data from the NWRB;
			• Data from the MMSP EPRMP (2017);
			 Data from available Comprehensive Land Use Plans (CLUP) of cities that will be traversed by the MMSP;
			• NWRB permit grantees data and
			• Data from other published technical information.
Water Quality		Review of secondary water quality data	 Water quality monitoring data from DENR for Tullahan River, San Juan River, Paranaque River, and Maricaban Creek;

		Water quality monitoring data from the Pasig River Rehabilitation Commission;
		 Data from the MMSP EPRMP (2017); Data from available Comprehensive Land Use Plans (CLUP) of cities that will be traversed by the MMSP; and
		Data from other published technical information.
	Water quality sampling and analysis using AS/NZS 5667.1:1998 and US EPA (2007) standards	Completed as part of MMSP EPRMP (2017)
Aquatic Ecology	Review and analysis of secondary data on aquatic ecology of the proposed project	 Modified Visual Stream Assessment Protocol: A Field Guide. Magbanua et al. (2013)
	area	 The use of a Stream Visual Assessment Protocol to determine ecosystem integrity in an urban watershed in Puerto Rico. de Jesús-Crespo, R., & Ramirez, A. (2011).
		Australian river assessment system: AusRivAS physical assessment protocol. Parsons, et al. (2002)
	Visual stream habitat field survey	_
Climate and Meteorology	Analy sis of weather station data	 PAGASA Climate and Agrometeorological Data Section (2018) Normals and Extremes from NAIA Terminal 3 and Science Garden Synoptic Weather Stations
	Analysis of general climate	 Climate Classification of the Philippines first established by Coronas (Coronas, 1920) and slightly modified by PAGASA (Flores & Balagot, 1969; Kintanar, 1984)
		Tropical Cy clone Frequency Map (The Manila Observatory)
	Wind analysis using Windrose PRO	PAGASA Climate and Agrometeorological Data Section (2018) 30-year Daily Wind Data from NAIA Terminal 3 and Science Garden Synoptic Weather Stations
	Analysis of Climate Change Projections in	PAGASA Climate Change Projections (2011)

		Metro Manila	
Greenhouse Assessment	Gas	GHG Inventory Calculations	 Calculations based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, the Principle of GHG Accounting and Reporting in the Greenhouse Gas Protocol, and ISO 14064:2000 Parts 1 and 2
		Comparison to Philippine and global emissions	 Computed GHG emissions were compared to the global and Philippine Emissions data from: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectors; Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergov ernmental Panel on Climate Change
			 Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergov ernmental Panel on Climate Chang Philippines. Second National Communication to the United Nations
Air Quality		Review of baseline ambient air quality	Framew ork Convention on Climate Change Baseline ambient air data were reviewed and collected from the project's previous EPRMP
		Primary sample collection of TSP, PM10, SO2, and NO2 for additional sites	 conducted by Delta Tierra Consultants, Inc. (2017) The additional ambient air quality sampling was performed with reference to the ambient air sampling protocols and analytical procedures specified in DAO 2000-81 (Implementing Rules and Regulations (IRR) of the Philippine Clean Air Act of 1999): TSP – High volume, gravimetric;
			 PM10 – High volume with PM10 inlet, grav imetric SO2 – Gas Bubbler – Colorimetric Pararosaniline NO2 – Gas Bubbler – Griess-Saltzman

Noise	Review of baseline noise measurements	•	Baseline noise data were reviewed and collected from the project's previous EPRMP conducted by Delta Tierra Consultants, Inc. (2017)
	Primary noise measurements for new sites	•	Noise levels were measured using a sound level meter meeting the requirements of IEC 61672-1
Socio-economics and Demographics	Review of secondary socio-economic data	•	Comprehensive Land Use Plans (CLUPs) of host
	Conduct of IEC, focus group discussions	-	municipalities / NCR Regional Development Plan
	(FGDs) and key informant interviews (Klls)	•	Socio-Economic Profiles
	Conduct of social perception survey	•	Official websites (e.g. host LGUs)
Environmental Risk	Determination of Level of Coverage	•	Annex 2-7e DAO 2003-30
Assessment	Determination of Risk Levels	•	Risk Matrix

EIA Summary

The schedule of activities conducted for the EIA of the Project is presented below.		
Baseline Information	Key Findings and Conclusions	
Land Cover	The whole region of Metro Manila is classified under the Land Cover type of Built-up area	
	Arable lands crops mainly cereals and sugar. Parts of the MMSP alignment traverse acros	
	land classification of Arable lands (7.5%) while majority of the alignment falls under the Bu	
	zone classification (74%).	
Land Use	The identified Land Use of the MMSP disturbance footprint are Residential (40%), Mix ed	
	(17%), and Commercial (16%). This is based from the consolidated Zoning Plans from	
	different cities which will be affected by the project.	
Land Utilization	Upon visual inspection of the Google Earth images, it can be concluded based from this	
	that the MMSP Components (construction yard, underground station boxes, and	
	interconnection between stations) that the actual land use in the ground would mostly	
	Commercial lands and Institutional zones, in general. The area of the proposed depot ca	
	generalized as an Industrial zone. While, the FTI Station is within the Medium-de	
	Residential zone.	
Protected Area	The nearest declared Protected Areas (PAs) from the MMSP is the Ninoy Aquino Parks	
	Wildlife Center (NAPWC), which is around 740 meters southwest north-east away from M	
	and the Las Piñas-Parañaque Critical Habitat and Ecotourism Area (LPPCHEA) which is a	
	5.3 km south-west away from MMSP. The MMSP has no significant influence to both dec	
	PAs.	
Impact to the Land Use	The impact of the MMSP during pre-construction would be the displacement of the resi	
	within the Residential zones especially in the construction the envisioned transportation h	
	FTI Station. Also, rights-of-way of the villages (entrance and exit) along East Service	

	would be a possible impact alongside with the potential vahisular toffe congestion durin
	would be a possible impact alongside with the potential vehicular traffic congestion durin
	construction of the project. Furthermore, during the earl stage of the operation, the vehicula
	traffic would be displaced to the other roads/routes. The development of a Station within th
	vicinity of McKinley West Village (Lawton East Station) will be a threat to the amenities (e.g
	solemnity and privacy of the place; and view value from the real estate properties) woul
	eminent. Though, it is expected that land values would rise near the alignment of the project.
Topography	The MMSP alignment is located within the Central Plateau region of Metropolitan Manila, wit
	elev ations ranging from $6 - 54$ masl and slope gradients of $0 - 8$ %.
Hy drogeologic Setting	The MMSP alignment will cross at least 11 rivers and creeks, including major rivers like th
	Pasig River, San Juan River and the Tullahan River.
Geody namic Setting	The MMSP alignment is located within a sEPRMPmically active region of the Philippine
	affected by active subduction (Manila Trench), fault movement (West Valley Fault), and Recei
	volcanism (Taal Caldera, Mt. Pinatubo and Laguna Caldera).
Local Geology	The MMSP track will burrow through mostly Guadalupe Formation tuff underlain with up to 1
	m residual soil along its alignment.
	The Vs30 model from PHIVOLCS shows that the East Avenue to Ortigas Stations has shea
	wave velocities ranging from 760 – 1500 m/sec, indicating NHERP Site Class B (rock) condition
	The rest of the alignment has Vs30 ranging from 360 - 760 m/s, indicating Class C (hard so
	condition.
Ohushuss	
Structures	The MMSP alignment has been designed to avoid the known trace of the West Valley Faul
	The alignment is closest to this fault along the segment from Ugong Norte to Capitol Commor
	in Pasig, with distances of 150 – 700 m. Initial borehole scan results show presence of structur
	defects such as joints, fractures, shears, etc. in each surveyed hole, indicating that th
	foundation is layered and non-massive.
SEPRMPmic Hazards	The MMSP alignment may experience ground shaking of 0.371 - 0.662 g caused by
	Magnitude 7.2 movement of the West Valley Fault. This is equivalent to PEPRMP Intensity V
	(i.e. Very Destructive) shaking. Other potential strong earthquake generators are the East Valle
	Fault, Laguna – Banahaw Fault, Philippine Fault Zone (Infanta Segment) and the undetermine
	source of the 1863 Manila earthquake.
	Probabilistic SEPRMPmic Hazard Assessment, as presented in the Philippine Earthquak
	Model by PHIVOLCS, show 0.35 – 0.5 g shaking along the MMSP alignment with a 10'
	probability of ex ceedance in 50 y ears (i.e. 500-y ear return period). 0.45 – 0.7 g shaking alor
	the alignment is predicted to have 5% probability of exceedance in 50 years (i.e. 2,500-ye
	return period).
	The MMSP alignment avoids the known trace of the West Valley Fault, so ground ruptu
	resulting from its movement is unlikely along the track. However, unmapped buried splays
	the fault may possibly be encountered while drilling.
	The MMSP alignment is founded on soil that is generally not susceptible to liquefaction. Th
	ex ception is along the Pasig River crossing, which is highly susceptible to liquefaction.
	Most of the MMSP alignment lies within areas that are not susceptible to earthquake-induce

	landslide, ex cept for segments between the Katipunan Avenue in Pasig and McKinley Parkway
	in Taguig.
	The MMSP alignment is not susceptible to tsunami due to its distance (3.8 km at the NAIA T3
	Station and 1.9 km from the Bicutan Interconnection) and elevation (13 and 37 mas),
	respectively) from the coast.
Pedology	The soils along the Depot to Ortigas South Station belong to the Novaliches series, except for
louology	the Katipunan Station which is underlain with Marikina series soil. From the Kalayaan Station
	down to the NAIA T3 Station and Bicutan Interconnection, the soil cover belongs to the
	Guadalupe soil series. Both Novaliches and Guadalupe series soils are derived from Guadalupe
	Formation tuffs (Diliman Tuff member), while the Novaliches series soil developed from alluvial
 .	deposits within the Marikina Valley.
Mass Movements	The MMSP alignment is located in areas that are not generally susceptible to landslide. A higher
	susceptibility rating (i.e. Low) is given to significant portions of the proposed alignment within
	Quezon City, from Quirino Highway Station down to Katipunan Station. The proposed stations
	in Pasig-Ortigas North Station and Ortigas South Station, also are within an area of Low
	rainfall-induced landslide susceptibility. The southern segment, from Kalay aan Station to FTI
	Station are not susceptible to landslide.
	The Depot is the component of the MMSP most susceptible to subsidence, as shown in the
	PSInSAR map indicating local subsidence in that area due to extensive groundwater extraction.
Hy drological Hazards	The MMSP alignment is located on areas that have generally No to Low flooding susceptibility,
	except along portions that intersect rivers and creeks where flooding susceptibility can be
	Moderate to High. Almost the entire segment from Ortigas North Station down to NAIA T3 and
	Bicutan are located in areas that have Low susceptibility to flooding.
	The MMSP alignment is not susceptible to coastal hazards such as storm surge, tsunami and
	sea level rise resulting from climate change or coastal subsidence due to its distance (3.8 km
	at the NAIA T3 Station and 1.9 km from the Bicutan Interconnection) and elevation (13 and 37
	masl, respectively) from the coast.
Volcanic Hazards	The MMSP alignment can be affected by strong ground shaking, resulting from explosive
	eruptions of Taal Volcano. Being largely underground, it is not susceptible to ashfall.
Land Cover and Terrestrial	Two unique land cover types were identified from the most recent land cover map from NAMRIA,
Vegetation Community Structure	which includes (1) built-up areas and (2) arable lands for crops. Based on the vegetation surveys
0 ,	(EPRMP 2017 and additional studies (2019), vegetation communities were mainly comprised of
	arborescent species interspersed in the remaining green spaces in the NCR.
Flora Species Inventory	EPRMP (2017)
	Recorded a total of 217 plant species belonging to 88 genera and 69 Families along the
	proposed 13 stations and train depot. Tax a richness were as follows: 86 species of trees, 43
	species of herbs, 39 species of shrubs, 16 species of climbers, 13 species palms, 12 species
	of fodder grasses, 3 species of ferns, 2 species of erect bamboos, one (1) species of sedge,
	one (1) species of pandan, and one (1) species of orchid.

Additional Assessment (2019)

A total 98 morpho-species in 82 genera and 36 Families were recorded along the four (4) transects. Dominant families were Fabaceae (13 species), Moraceae (10 species), Arecaceae (6 species), and Myrtaceae (5 species). The most frequently occurring species were *Pterocarpus indicus* (Narra; 272 individuals), *Swietenia macrophylla* (Big leafed mahogany; 97 individuals), *Terminalia catappa* (Talisai; 77 individuals), *Albizia saman* (Akasya; 66 individuals), and *Delonix regia* (Fire tree; 35 individuals).

	and <i>Delonix regia</i> (Fire tree; 35 Individuals).
Endemicity and Conservation	EPRMP (2017)
Status of Plants	Of the 217 species, only three (3) species were Philippine endemic, namely Ficus ulmifolia (Is-
	is), Artocarpus blancoi (Antipolo), and Caryota mitis (Pugahang Sui). Six ty-three species
	(29%) were considered indigenous/native to the Philippines, with existing natural distributions
	extending bey ond the region. The remaining 151 species (70%) are all introduced/exotic.
	A total of nine (9) species were categorized under IUCN 2019 and DAO 2017-11. Noteworthy
	among the list were Adonida merrillii (Manila palm), Dypsis lutescens (Butterfly palm),
	Hyophorbe lagenicaulis (Champagne palm), Pterocarpus indicus (Narra), Vitex parviflora
	(Molave), Swietenia macrophylla (Big leafed mahogany), Artocarpus blancoi (Antipolo), Ficus
	ulmifolia (Is-is), and Nephelium lappaceum (Rambutan).
	Additional Assessment (2019)
	Of the 98 morpho-species, only four (4) species were endemic to the Philippines. These include
	Ficus balete (Balete), Ficus pseudopalma (Niog-niogan) and Ficus ulmifolia (Is-is). The other
	endemic species is a Batanes-endemic gymnosperm called Podocarpus costallis (Arius). There
	were eight (8) species recorded that are classified as threatened under the updated national list
	of threatened Philippine plants and their categories (DAO 2017-11) and/or the IUCN Red list of
	threatened species (2019-1). These are Podocarpus costalis (Arius), Pterocarpus indicus
	(Narra), and Ficus ulmifolia (Is-is). Podocarpus costalis (Arius), an endemic species from
	Batanes is categorized as endangered under DAO 2017-11 and IUCN 2019-1. Pterocarpus
	indicus (Narra) is categorized as endangered in IUCN 2019-1 and vulnerable in DAO 2017-11.
	Lastly, Ficus ulmiforlia (Is-is), an endemic species recorded during opportunistic survey is
	categorized as vulnerable under IUCN 2019-1.
Density, Frequency and	Summary of the computed species diversity index values for EPRMP (2017) and the
Dominance of Plants	additional assessment (2019) are presented in the tables below:

EPRMP (2017) and Additional Assessment (2019)

Station	Diversity Index (H)
Quirino Highway Station	2.57
Tandang Sora Station	1.23
North Avenue Station	2.33
Quezon Avenue Station	2.07
East Avenue Station	2.31

	Katipunan Avenue Station	2.39	
	Ortigas North Station	2.21	
	Ortigas South Station	2.18	
	Kalay aan Av enue Station	0.89	
	Bonifacio Global City Station	0.00	
	FTI Station	2.57	
	Transect1 (T1)	3.35	
	Transect2 (T2)	0.97	
	Transect3 (T3)	1.93	
	Transect4 (T4)	2.17	
/ulnerability to Climate Change of	Expected sporadic increases in terms of ambient temperatures an	d ex treme w eather condition	
Plants	(i.e., high precipitation events, strong ty phoon-mediated winds, int	ense irradiance) in the comin	
	decades could potentially impact the optimal growth rate, morta	lity rate, and survival rate	
	v arious tree species found within and near the surveyed areas.		
Hydrology and Hydrogeology –	The entire MMSP project site is located within the Manila Bay Ca	atchment Area, and straddle	
Drainage system of the project	seven catchments that form part of the Pasig-Marikina-Laguna of	le Bay Basin. The Laguna c	
	Bay Basin is one of the four major river basins of the Manila Bay Catchment Area.		
	The seven catchments traversed by the MMSP alignment include the Tullahan Riv		
	Catchment, San Juan River Catchment, Marikina River Catchm	-	
	Pateros River Catchment, Paranaque River Catchment, and Mun	-	
	alignment will cross at least 9 rivers/creeks, albeit underground, e	ex cept for the unnamed cree	
	that will be directly crossed by the Quirino Highway Station.		
Flooding	The MMSP alignment traverses areas along Metro Manila that have moderate to high flooding		
	susceptibility. These areas include the Valenzuela Depot, Quirin	o Highway Station, Tandar	
	Sora Station, Quezon Avenue Station, East Avenue Station, Katip	unan Station, Anonas Station	
	Law ton East Station, Law ton West Station, and FTI Station.		
Groundwater Environment	The area traversed by the MMSP consists of Class I (B) and Class	ass I (C) aquifers. Class I (E	
	aquifers are fairly extensive and productive aquifers with moder	ate to high permeability whi	
	Class I (C) aquifers are considered local and less productive aq	uifers, with well yields most	
	about 2 L/s but as high as 20 L/s in some sites.		
	A total of 46 deep wells have been granted by the NWRB within	n a 1 km radius of the MMS	
	realignment site. As per the NWRB water listing, the static w		
	deepwells with available pumping test data located within the		
	alignment ranged from 21.31 to 141.73 meters below ground le		
	mbal.		
Nater Users	mbgl. Metro Manila's water supply is provided by the Manila Water	Company, Inc. (MWCI). ar	
Nater Users	mbgl. Metro Manila's water supply is provided by the Manila Water May nilad Water Services, Inc. (MWSI). Individual houses in Mo		

	wells. A walkthrough survey of some of the host communities of the MMSP expansion site
	Taguig City and Pasay City identified at least 20 perennial wells with approximate depth
	ranging from 9 to 20 m (based on information from well owners). These wells are used b
	residents for domestic purposes such as drinking (boiled prior to consumption), cooking
	bathing, and cleaning.
Surface water quality	Tullahan River, San Juan River, Pasig River, and Maricaban Creek are currently heavily pollute
	and have poor water quality, with elevated concentrations of BOD, DO, phosphates, and feca
	coliform that exceed the DAO 2016-08 Class C WQG
Groundw ater quality	Water from the two groundwater deep wells sampled during the 2017 EPRMP meet the PNSD
	ex cept for fecal coliform levels in the Valenzuela City deepwell. Both deep wells are rarely use
	by the community and are used only as a back up source of water supply (Delta Tier
	Consultants, Inc., 2017).
Water quality - Existing sources of	Sources of pollution that contribute to the degradation of Tullahan River, San Juan River, Pas
pollution	River, Maricaban Creek and Paranaque River include solid wastes from domestic, commercia
	and industrial activities, and wastewater discharges from households, commercial/institutior
	establishments, and industries
Aquatic ecology	Maricaban Creek
land coolegy	Channel flow across the waterway is apparently low. Coupled with altered stream
	channel as a result of built-up concrete structures (i.e., perimeter walls, concrete ledges
	bank reinforcements), having reduced channel flow entails less available microhabitat fo
	resident aquatic biota. stream velocity and depth regime is somehow complex, as
	evidenced by the mix ture of slow-deep and slow-shallow areas. Bank stability is good
	due to the observable bank strengthening components from both banks. Observed ban
	vegetative zone was relatively good. Notable riparian species include different varieties
	of figs (Ficus sp.) along the majority of the creek margin, which are important food
	sources for various insect and pollinator species thriving in the area. Sediment deposition
	was not common for the most part of the creek and canopy cover was variable. Overall
	stream health in Maricaban Creek falls under the poor condition rating.
	Don Galo Creek
	Low gradient stream courses through a highly residential area, with characteristic bank
	fortification structures along the entire surveyed stream channel. Channel flow was
	relatively good and comparatively higher in that the volume of water present in the
	channel reaches the majority of the stream cross-sectional area. Sparse vegetation
	communities was interspersed along the margins of the creek, as the bank vegetative
	zone width is reduced as a result of the construction of concrete-enriched stream banks
	Canopy cover was relatively fair and could be attributable to the patchy distribution and
	dispersed orientation of the vegetation species in the immediate riparian buffer, wherea
	the vegetation zone width was low. Overall, the stream health in Don Galo Creek falls

General Climate	 The project site is in an area classified as Type I based on the Modified Coronas' Classification. This climate type is characterized as having two pronounced seasons: dry from November to April and wet during the rest of the year. Maximum rain period is from June to September.
Monthly Rainfall	 The total monthly raindfall at the PAGASA synoptic weather station in NAIA Terminal ranges from 4 mm (March) to 418.4 mm (August). The total annual rainfall amounts to 1,767.90 mm with an annual number of rainy days of 105 days or approximately 29% of the year. The rainfall in the PAGASA synoptic weather station in Science Garden were higher. The total rainfall ranges from 14.6 mm (February) to 504.2 mm (August) with total annual rainfall of 2,574.30 mm. The annual number of rainy days is 151 corresponding to 41.4% of the year. The highest daily rainfall recorded at the NAIA Terminal 3 was 472.4 mm on July 20, 1972 For the PAGASA Science Garden weather station. The highest daily rainfall was 455. mm on September 26, 2009 during Typhoon <i>Ondoy</i> (International name Ketsana)
Temperature	 At NAIA Terminal 3, the mean temperatures ranged from 26.1 °C (January) to 29.7 °C (May), with an annual av erage mean temperature of 27.8 °C. Although the temperature ranges (difference between maximum and minimum temperatures) are higher in Science Garden, the av erage annual mean temperature is similar (27.7 °C). The coldest month is January (25.7 °C) while May is the hottest (29.7 °C). In both weather stations temperatures are usually higher the MAM period and low er during the DJF period. The highest temperature recorded in NAIA Terminal 3 w as 38.2 °C on May 18, 1969, whi the coldest w as 14.6°C on February 1, 1962. At the PAGASA Science Garden, the highest temperature w as 38.5 °C on May 14, 1987, while the coldest w as 14.9 °C on March 1963
Relative Humidity	 The annual average relative humidity are 76% (NAIA Terminal 3) and 78% (Science Garden). August and September are the most humid months with average relativ humidity of 76% and 79%, respectively, while the month of April is the least humid at 67° in both weather stations.
Wind	 Long-term wind data indicate that the average wind speeds in NAIA Terminal 3 an PAGASA Science Garden ranges from approximately 2.2 m/s to 3.2 m/s, and 1.9 m/s to 2.3 m/s, respectively. Based on the Beaufort Wind Force Scale, these wind speeds ar classified as 'light breeze.' Wind rose analysis of the 30-year daily wind data at the PAGASA synoptic weather station in NAIA Terminal 3 shows that the prevalent wind direction is to the west, east, an southeast directions. The wind directions are to the east and southeast directions durin the months of October to April and starts to shift to the west in May, lasting until September At the PAGASA synoptic weather station in Science Garden, the wind direction throughout the year is predominantly to the north. From October to April, the predominant wire

	September. These characteristics are consistent with the two principal airstreams the
	dominate the Philippines: the Northeast Monsoon (Amihan) which prevails from Octob
	to April and the Southwest Monsoon (Habagat) which is prevalent from May to Septembe
	• Poly nomial trend analy sis shows that the average monthly wind speed in NAIA Terminal
	based on the 1989 to 2018 dataset is highest during the MAM season and low est in SON
	In Science Garden, the windspeeds were highest during the JJA season and low est durin
	the DJF season.
Tropical Cy clone	 The project site is in an area traversed by 24 tropical cyclones in 12 years (two tropic
	cy clones per y ear)
Climate Change Brainstian for	• • • •
Climate Change Projection for	The simulations indicate that for the medium-range emission scenario, rainfall is expected
Rainfall	to decrease during the dry seasons (DJF and MAM) and increase during the wet season
	(JJA and SON) in both time-slices, making the dry season drier and the wet season wette
Climate Change Projection for	The results of the simulation show that ambient mean temperatures have an increasin
Temperature	trend in 2020 and 2050 from the baseline. For the medium-range emission scenario, th
	temperature will range from 27.1 °C to 29.9 °C in 2020 and 29.3 to 30.9 °C 2050. In bo
	2020 and 2050 time slices, MAM is projected to be the warmest season every year.
Global Greenhouse Gas Profile	• Total anthropogenic GHG emissions have continued to increase over 1970 to 2010 wi
	larger absolute decadal increases tow ard the end of this period.
	CO ₂ emissions from fossil fuel combustion and industrial processes contributed about 78 ⁴
	of the total GHG emission increase from 1970 to 2010, with a similar percentag
	contribution for the period 2000-2010.
	 About half of cumulative anthropogenic CO₂ emissions between 1750 and 2010 have
	occurred in the last 40 years.
	Annual anthropogenic GHG emissions have increased by 10,000 million tonnes of CO2
	between 2000 and 2010, with this increase directly coming from energy supply (47%
	industry (30%), transport (11%), and buildings (3%) sectors. Accounting for indire
	emissions raises the contributions of the buildings and industry sectors.
	• Globally, economic and population growth continue to be the most important drivers
	increases in CO2 emissions from fossil fuel combustion. The contribution of populatio
	grow th betw een 2000 and 2010 remained roughly identical to the previous three decade
	w hile the contribution of economic grow th has risen sharply.
	• The IPCC Fifth Assessment Report (AR5) estimated that the worldwide anthropogeni
	greenhouse gas emissions totaled nearly 49 billion tonnes of CO ₂ -e in 2010.
Philippine Greenhouse Gas Profile	
	• An inventory of GHG emissions conducted in 2000 showed that the Philippines emitter
	approx imately 21.767 million tonnes of CO ₂ -e (including LULUCF ²).
	The Philippine GHG emissions in the year 2000 due to fuel consumption was estimated to
	be at 69.67 million tonnes of CO ₂ –e (ex cluding LULUCF ⁶)

² Land Use, Land Use Change, and Forestry- is the subset of Agriculture, Forestry and Other Land Use (AFOLU) emissions and removals of GHGs related to direct human-induced land use, land-use change and forestry activities excluding agricultural emissions and removals

Particulate Pollutants	 The 24-hour ambient air quality monitoring along the MMSP's alignment ranges from 57. μg/NCM (Station A1) to 204.3 μg/NCM (Station A13) during the dry season, and 5 μg/NCM (Station A14) to 521 μg/NCM (Station A1). All ambient air quality monitorin stations are within their DAO 2000-81 NAAQGV (230 μg/NCM) except for Stations A (521 μg/NCM), A2 (248 μg/NCM) and A10 (265 μg/NCM). Based on Annex A of DA 2000-81. The ambient air quality along the Project's alignment in terms of TSP is 'good' 'acutely unhealthy.' The 1-hour TSP in the three stations were 25 μg/NCM, 31 μg/NCM, and 32 μg/NCM, respectively. All monitoring stations are within the DAO 2000-81 NAAQS (300 μg/NCM). PM10 concentrations ranged from 37.2 μg/NCM (Station A6) to 81.4 μg/NCM (Station A13) during the dry season and 25.2 μg/NCM (Station A14) to 209 μg/NCM (Station A1) durin the wet season in the stations along the MMSP. All ambient air quality monitoring station are within their DAO 2000-81 NAAQGV (150 μg/NCM) except for Stations A1 (20 μg/NCM), A2 (191 μg/NCM), and A12 (193 μg/NCM). Based on Annex A of the DA 2000-81, the ambient air quality in the stations along the MMSP alignment in terms of PM is 'good' to 'unhealthy to sensitive groups.' The 1-hour PM10 concentrations in Stations AN1, AN2, and AN3 where 19 μg/NCM, 2
	μg/NCM, and 25 μg/NCM, respectively. All stations are within the DAO 2000-81 NAAQ (200 μg/NCM).
Gaseous Pollutants	 The 24-hour NO₂ concentrations in all monitoring stations ranged from 15.7 µg/NC (Station A1) to 37.3 µg/NCM (Station A11) during the dry season and 4.5 µg/NCM (Station A3) to 86 µg/NCM (Station A10) during the wet season. All stations were within the DA 2000-81 NAAQGV (150 µg/NCM).
	 The1-hour NO₂ concentrations in Stations AN1, AN2, and AN3 were 17 µg/NCM, 6 µg/NCM, and 20 µg/NCM, respectively. All stations are within the DAO 2000-81 NAAC (260 µg/NCM). Annex A of DAO 2000-81 has no prescribed index for NO₂ concentration below 1,220.5 µg/NCM.
	 The concentrations of 24-hour SO₂ ranged from below detection limit (<4 µg/NCI (Stations A9 and A13) to 5.3 µg/NCM (Station A1) during the dry season and belo detection limit (<4 µg/NCM) (Stations A2, A3, A4, A5, A7, A9, A11, AN1, and AN2) to 17 µg/NCM (Station A1) during the wet season. All stations are within the DAO 2000-8 NAAQGV (180 µg/NCM). Based on Annex A of the DAO 2000-81, the ambient air quality of the term of term of the term of term of the term of term of term of term of term of term of the term of term of term of term of the term of te
	 in the monitoring stations along the MMSP alignment is 'good.' The 1-hour SO₂ concentrations were 16 μg/NCM, 20 μg/NCM, and 23 μg/NCI respectively. All stations are within the DAO 2000-81 NAAQS (340 μg/NCM).
Lead and Ozone	 Lead (Pb) and Ozone (O3) were monitored for the dry season in 2017 in Stations A1, A A6, A9, A11, and A13. The concentrations of Pb and O3 were undetected in all monitorii stations and below the DAO 2000-81 NAAQGV for Pb (1.5 µg/NCM) and O3 (140 µg/NCI)

Existing October of Dalla teach	
Ex isting Sources of Pollutants	 TSP and PM10 are generated when fossil fuel is consumed by vehicles. In addition, fugitive emissions of these particulate pollutants are released into the environment through wheel entrained dusts from roads. Dust kicked up by vehicles traveling on roads may make up 33% of air pollution. Road dust consists of deposits of vehicle exhausts and industrial exhausts, particles from tire and brake wear, dust from paved roads or potholes, and dust from construction sites. Road dust is a significant source contributing to the generation and release of particulate matter into the atmosphere. Control of road dust is a significant challenge in urban areas, and in other locations with high levels of vehicular traffic upon unsealed roads, such as mines and landfill dumps. SO2 and NO2 are generated from the combustion of fossil fuel by vehicles.
	I of ally coded, areas with rotatively more routenait areas have rower noise pointed in the point of a point of a set of the set
Existing Sources of Noise	 Based on the land use categories and the results, noise associated with commercial, residential, and industrial activities can be considered as existing sources of noise pollution.
Wildlife species inventory	 A total of 213 species comprised of six (6) amphibians, 12 reptiles, 184 birds, and 11 mammals was recorded along the MMSP (original and revised) alignment, and nearby major greenspaces. Recorded birds (184 species) represent approximately 37% of the known total for Luzon mainland (493 species).
Summary of range distribution	 Range distributions was dominated by native but non-endemics/ resident breeding non-endemics with 92 species or 43% of the total. Other range distributions noted were: migratory birds with 67 species or 31% of the total, endemics with 29 species or 14% of the total, introductions with 19 species or 9% of the total, and migrants with resident breeding populations with six species or 3% of the total. Endemics were relatively high despite the available habitat.
Conservation Status (Threatened, Near Threatened, and Least Concern)	 Majority of recorded wildlife are Least Concern with 182 species or 85% of the total based on IUCN 2019 and RA 9147/ CITES 2019. At least 28 species or 13% of the total (composed of four reptiles and 24 birds) are included in v arious conservation listings based on IUCN 2019 and RA 9147/ CITES 2019. Five (5) of these threatened species are introduced or not originally from the Philippines. Three (3) species are Near Threatened based on IUCN 2019.

Hindrance to wildlife access, historical occurrences of pest infestation, forest/grass fire, and/or similar incidences	 The MMSP (original and revised) alignment and surrounding areas are highly urbanized and the original vegetation therein have long been removed and converted into development areas. Wildlife access across the entire MMSP alignment is fragmented due to the absence of original vegetation and various development. Remaining wildlife habitats are limited within the 27 major greenspaces. Major disturbances are growing human population, pollution, and conversion of natural habitats and remaining greenspaces to built-up areas.
Vulnerability to Climate Change	 As the NCR area is ex tra vulnerable to the effects of climate change due to high pollution levels, absence of good vegetation cover, and increased flooding incidents, these may add-up to the projected sporadic increases in terms of ambient temperatures and ex treme weather conditions. Said conditions may potentially impact the already limited wildlife populations in the NCR and overall health of the few remaining greenspaces.
Vibration	•
Demographic Profile	In all three cities, about half the population is less than 27 years old with the largest population group in age $20 - 29$; the low est, 80 and ov er. There are about $40 - 45\%$ young (0-14) and old (65 and ov er) people who are dependent on the working age population (15 - 64). Population grow th rate ranges from 1.12% (Pasay, the low est) to 4.32% (Taguig, the highest and almost four times the rate of Pasay).
Socio-Economic Profile	Taguig City
	Highly Urbanized City
	• 53.67sqkm (5,367ha) land area; 8.66% of NCR
	• 28 barangay s
	• First Class City: PHP5.56 Billion regular revenue (fiscal 2016)
	Annual Population Growth Rate: 4.32% (2010-1015)
	Barangay Fort Bonifacio
	• 2.4sqkm (240ha); 4.47% of City
	Includes within its jurisdiction Fort Bonifacio (military camp), Bonifacio Global City (business, financial, and lifesty le district)
	Pasay City
	Highly Urbanized City
	• 13.97sqkm (1,397ha) land area; 2.25% of NCR
	• 201 barangay s
	• First Class City : PHP3.53 Billion regular rev enue (fiscal 2016)
	Annual Population Growth Rate: 1.12% (2010-2015)
	Barangay 183
	• 53 hectares; 3.79% of City
	Formerly part of military base (Philippine Airforce). Includes New port City (lifesty le district), NAA
	Terminal 3

	Pasay City				
	Highly Urbanized City				
	• 13.97sqkm (1,397ha) land area; 2.25% of NCR				
	• 201 barangays				
	• First Class City: PHP3.53 Billion regular revenue (fiscal 2016)				
	Annual Population Growth Rate: 1.12% (2010-2015)				
	Barangay 183				
	• 53 hectares; 3.79% of City part of military base (Philippine Airforce). Includes New port				
	City (lifestyle district), NAIA Terminal 3				
Public Health Services	Primary, secondary and tertiary health care and services are available in Taguig, Pasay and				
	Paranaque. Primary health care is available in all barangays through the health centers of the				
	municipal government. A world class and internationally accredited tertiary facility, St Luke's, is				
	located in Bonifacio Global City, Taguig. Each city maintains a city -ow ned hospital.				
Cultural Heritage	There are three cultural heritage sites near the project alignment; Bonifacio War Tunnel, the				
	American War Memorial and Cemetery and the Nutrition Center of the Philippines (Interior				
	Design). The closest to the alignment is the Nutrition Center of the Philippines at 25 meters.				
Transport and Traffic	The existing transport systems near the project include road, railway, mass rapid transit, light				
	rail transit, air transport, water transport and other modes of public transportation such as Public				
	Utility Jeepneys, Asian Utility Vehicles and tricycles. Due to the road capacities and volume of				
	traffic some nearby roads currently have a low level of service.				
Perception of the Project	Barangay 183				
	• The respondents constituted household members, property owners, tenants, and				
	business ow ners. A total of 98 respondents were survey ed, 53 of which were female				
	(54 %) and 45 were male (46 %).				
	• Majority of the respondents (54 % or 52 individuals) in Barangay 183 answered that they				
	do not hav e prior know ledge about the project, while 44 individuals (46 %) responded				
	that they were aware about the project				
	Barangay Fort Bonifacio				
	 Targeted respondents were office workers near the direct impact areas, vendors, and 				
	residents. A total of 100 respondents were interviewed in the barangay, 58 of which were				
	male (58 %) and 42 were female (42 %).				
	sourcing the information from mass media (73%). Others were aware of the project from				
	the gov ernment and barangay officials (15 %), while others from relatives, neighbors,				
	and friends (12 %).				
	San Martin de Porres				
	The respondents were a diverse group of property owners, tenants, business owners				
	and their employees. The survey was conducted upon the IEC to the Barangay				
	Chairman and officials, as well as to the officials of the Homeowners' Association of the				
	affected village.				

 Majority of the respondents from SMDP stated that they have prior knowledge about the project (76 %)

	Environmental	posed mitigation measures are presented below	
Project Phase	Component Likely to be Affected	Potential Impact	Options for Prevention, Mitigation or Enhancement
Pre-	Land Use	Change or inconsistency in land use and pote	ential tenurial issues
construction,		Some of the locations of the MMSP Station	• Doing the right practices with regards
Construction,		is within Residential zones, and most of the	to the negotiations with the concerned
Operation,		areas are within Commercial zones.	parties pertaining to land acquisition
Closure		Displacement of the residents within the	should be done. Fair market value
		Direct Impact Area of the station	should be determined by providing a
		developments (transport hubs and station	clear reference to the applicable legal
		plazas) will be done.	instrument.
		Potential impact of the project to the other	The DOTr should continuously coordinate
		Subway Projects in Metro Manila (e.g.	with the LGUs and other related governmer
		Makati Subway Project), such as	agencies (e.g. DPWH, MMDA) and secure
		intersection of the alignments.	the necessary permits, endorsements, and
			clearances required for the construction.
			• The depth of the underground activity
			of the project should closely
			coordinated with the authorities
			handling the other Subway Projects
			within Metro Manila.
		Land disputes	• Secure easement agreements with the
			owners of the properties in the vicinity
			to hav e safety net in response to
			tenurial issues over the development
			area for the project.
Construction,	Land	Change in land values of areas near and with	nin the alignment of the project
Operation,		The land values of the area within the	• Limit/control the commercialization of
		vicinity of the station development is	the planned mixed-use developments
		expected to increase.	within the planned Station Plazas to
			some of the stations
Pre-	Subsurface	Change in sub-surface / underground condition	ons

construction,	Conditions	Tunneling will alter existing underground	•	Perform tunnel deformation analysis to
Construction,		stress distributions		determine how the hollowing of ground
Operation				will affect underground stress regimes
Construction,	Subsurface	Installation of buried facilities and introduces	•	Use non-reactive materials for pipes
Operation,	Conditions	new material types to the ground which can		and other buried components to ensure
Closure		react with the soil		that soil contamination is prevented.
Pre-	Subsurface	Solid wastes generated can be cause of	•	Implement proper waste management
construction,	Conditions	pollution that would impact the quality of		and disposal system to prevent
Construction,		surrounding soil / ground		contamination of surrounding soil and
Operation,				w ater.
Pre-	Subsurface	Excavation and tunneling may accidentally	•	Perform due diligence and utilities
construction	Conditions	hit buried facilities such as pipelines that		survey. Adjust design to avoid utilities
		could spill contaminants to the groundwater		or coordinate with utility owner on how
		and soil.		to transfer these to another location.
Construction,	Subsurface	Buried pipeline may leak water underground	•	Use strong and durable materials for
Operation,	Conditions			pipes to prevent leakage.
Pre-	Geohazard	Inducement of subsidence, liquefaction, lands	slides	s, mud/debris flows, flooding, etc.
construction	Susceptibility	Tunneling will leave an underground void	•	Perform tunnel deformation analysis to
Construction,		which will affect pore water pressure of		determine how the hollowing of ground
Operation		overlying materials, leading to possible		will affect underground stress regimes
		ground subsidence	•	Install piezometers to monitor
				groundw ater pressure around the
				tunnel,
			•	Ensure that the tunnel is sufficiently
				supported and lined to prevent failure
				and ingress of groundwater.
Construction,	Geohazard	Leakage from pipes may saturate the	•	Use strong and durable materials for
Operation,	Susceptibility	ground, causing it to soften and subside.		pipes to prevent leakage.
Pre-	Geohazard	Continuous operation of heavy machinery	•	Perform liquefaction tests on segments
construction	Susceptibility	produces vibration that may induce		found to have indications of liquefiable
Construction,		liquefaction.		soil.
Operation			•	Use vibration dampers, if necessary.
Pre-	Geohazard	Inducement of flooding		
construction	Susceptibility	Excavation and tunneling sites may collect	•	Do not let ex cav ation pits and trenches
Construction,		rainfall and groundwater, creating pools of		collect water.
Operation		w ater.	•	Provide necessary drainage (e.g.
				pumps) in ex cav ated components.
Pre-	Geohazard	Burst pipes can leak significant amounts of	•	Use strong and durable materials for
construction,	Susceptibility	water to the surface, which could cause		pipes to prevent leakage.
Construction,		flooding.		

Operation			
Pre-	Soils	Inducement of soil erosion	
construction, Construction, Pre-	Terrestrial	Erosion of stockpiled ex cav ated or burrow ed soil due to ex posure to rainfall and air can lead to dust generation and increased siltation of water bodies. Vegetation removal and loss of habitat	
Pre- Construction	Terrestrial Vegetation	 Vegetation removal and loss of habitat The Project will be constructed in a highly urbanized area, with interspersed green spaces supporting numerous diverse arborescent tree species. Approximately Development and implementation of a 63.23 ha of above ground land area will be cleared of vegetation prior to the subway construction. Development and implementation of a pre-clearing plan prior to construction. The plan should contain detailed clearing and cutting protocols to reduct impacts to the surrounding areas. Generation of a Biodiversity Management Plan (BMP) prior to the start of the development activities, as this document outlines the conserv ation objectives of the Project and will detail the perceived impacts in biodiversity Securing both tree cutting and earth balling permits from the Department o Environment and Natural Resources (DENR). Replacement of cut trees should be in accordance with the DENR Memorandum Order (DMO) 2012-02. Provision of offset sites for all areas that will be cleared. These designated areas should be approximately equivalent to the land area affected by the Project, and must be jointly 	
Du	Terr (11)	identified by DOTr and DENR	
Pre- Construction, Construction	Terrestrial Vegetation	Vegetation removal as a threat to local existence of endemic and/or threatened plant Noted threatened species, including but not • Securing earth balling permits from limited to, Pterocarpus indicus (Narra), DENR prior to vegetation removary Adonidia merrillii (Manila palm), Diospyros activities discolour (Kamagong), Vitex parviflora •	

		(Molvae), <i>Podocarpus costalis</i> (Arius within and in the immediate vicinity of the Project could be removed and displaced from their natural habitats.	 Guided transplanting and earth balling activities with the supervision of an expert horticulturist / agriculturist to facilitate high survival rate of transplanted trees. Appropriate maintenance activities should be conducted to ensure high survival rates of earth balled tree species
Pre-	Terrestrial	Indirect effects	
Construction, Construction	Vegetation	Dust – the accumulation of dust on the leaf laminae could inhibit come major phy siological processes of plants (i.e., photosy nthesis, transpiration, respiration, phenology) and could even contribute to phy sical abrasion. Such may lead to decreased plant fitness and mortalities.	 Implementation of regular water sprinkling, especially during the dry season along dusty areas to reduce the harmful effects of dust emissions. Inclusion of weed control measure in the Biodiversity Management Plan (BMP) of the Project
		Increased weed infestation – weeds prefer disturbed areas, which may be likely to occur in among the sites especially during construction phase.	
Construction, Operation	Hy drology	Change in drainage morphology / inducemen	t of flooding / reduction in stream volumetric
		Ground disturbance during construction activities may temporarily disrupt natural drainage flow which may result to the development of new surface runoff paths	 All trench and foundation will be backfilled and ground restored to its original condition Tunnelling works using TBM are not anticipated to impact river/stream waterflows
Construction,	Hy drology	Inducement of flooding / reduction in stream ve	olumetric flow
Operation, Closure		Some sections of the MMSP alignment will traverse areas with moderate to high flooding susceptibility	 Temporary drainage and detention cum siltation ponds will be constructed in construction areas if necessary to mitigate localized flooding. Temporary bund walls will also be provided as necessary

•	Stations will be provided with permanent
	bund walls along with water-sealed
	panels, tempered glass and waterproof
	iron doors, and drainage pumping
	stations

- The Depot will be provided with a drainage system to collect surface runoff to designated outfalls
- A Construction Waste Management Plan will be prepared for the project in order to appropriately handle and dispose ex cav ated materials and demolition debris that may clog drainage sy stems and waterways

			and waterways
Construction	Hy drology	Change in stream depth	
		Temporary cofferdams will be required	Construction activities along the
		during the construction of the Quirino	waterway will be done during the drier
		Highw ay Station, which will encroach on top	months of the year or during low flows
		of an unnamed creek. Cofferdams constrict	w henev er practicable. Div ersion
		waterways and reduce flow area, which may	channels that are designed to
		cause a minimal increase in water surface	adequately convey design flows with
		level upstream of the construction area	minimum if any backwater effect will be
			used
			• Tunneling works are not anticipated to
			induce changes in stream depth given
			that the tunnel will be located about 16
			m underground on av erage
Construction,	Hy drology	Depletion of water resources and water comp	etition
Operation		Fresh and potable water will be required	• Considering that the proposed project
		during the construction and operation	will not be extracting water from existing
		phase of the project which may strain	surface waters crossed by the MMSP o
		existing water sources used by the	construct new wells, potential water
		community	competition as a result of the project
			activities is unlikely
			• Potable water will be sourced from the
			local water utility providers.
Construction,	Hy drology	Groundwater drawdown	
Operation		Groundw ater dew atering during the	Conduct detailed hy drogeological/
		tunnelling works could potentially induce	groundwater study in the detailed design
		groundw ater draw dow n	stage.

			•	Installation of monitoring wells for observation along the subway tunnel and monitor change of the surrounding groundwater levels If water supply of people relying on groundwater along the alignment decreases, DOTr shall make arrangements to supply affected people with water. DOTr should coordinate with NWRB regarding tunneling activities along the alignment and its potential effects on the water table A Dewatering Permit may have to be secured from NWRB prior to tunneling
				activities.
Construction,	Water quality	Siltation and sedimentation of waterways		
Operation		Earth moving activities during the construction phase have the potential to increase turbidity and sedimentation in surface runoff which may eventually flow and discharge to nearby rivers and creeks	•	Erosion and sediment control measures and spill prevention techniques including silt screens, drain channels, diversion dams, sumps and/or settling ponds will be provided in construction areas as necessary Spoil and building material stockpiles will be provided with phy sical barriers and/or bunds to minimize silt-laden runoff Surplus soil from tunneling will be used as backfill; remaining surplus soil after construction will be disposed appropriately in five identified sites within Metro Manila Conduct of regular water quality monitoring
Construction,	Water quality	Contamination of groundwater as a result of	tunn	-
Operation	-	Dew atering as part of borehole drilling and tunnelling may potentially contaminate groundw ater resources	•	Dew atered groundw ater from tunneling activities should meet DAO 2016-08 standards prior to disposal Conduct of regular water quality monitoring

Construction,	Water quality	Contamination of waterways with hydrocarbo	ons ar	nd project wastes
Operation		Liquid and solid wastes generated by the project including lime slurry wastes that may be produced during the tunnel boring process may contaminate waterways if disposed improperly. Accidental spills of fuel and other hydrocarbon and chemical products may contaminate waterways.	•	A Waste Management Program for the construction and operations phase will be developed and implemented for the MMSP. Contractors will also be required to submit a wastewater management plan. Fuel storage facilities will be provided with adequate spillage protection
Pre-	Aquatic Ecology	Sediment influx in waterways		
Construction, Construction,		Delivery of sediments and other debris into the water column of the stream channel, originating from the activities during the pre- construction and construction phase.	•	Designation of buffer zones approximately 5 m from each bank to dampen the rapid entry of sediments and organic debris Development and implementation of a construction plan during earth moving actives which ensures that the potential delivery of sediments and other particulate matter into the stream channel is kept at minimum.
Construction,	Climate	Climate change impacts		
Operations		The Project will be constructed in a highly urbanized area. The project's above ground disturbance footprint is 120 hectares in high density built-up areas and is not expected to significantly affect the local climate.	•	Monitoring of any changes in local climate will still be performed, following the frequency of ambient air monitoring.
Pre- construction,	Climate	Being in Metro Manila, the MMSP is vulnerable to sea level rise, increased		Establishment of comprehensive management systems to address
Construction,		intensity of storms, increased temperatures,		climate adaptation;
Operations, Closure		and exposure to climate change-induced flooding and storm surge.	•	Preparation of risk-identification processes to include climate risk and opportunities;
		Projected changes in temperature could potentially cause track expansion which can lead to train delays, and in the most ex treme cases can lead to derailments	•	Integration of climate-related risks and mitigation measures into business decisions throughout the project life; Ensuring robust engineering design and construction standards for facilities;
		Increase in ambient temperatures may require additional electricity usage for temperature regulation for MMSP. Electricity	•	Design of comprehensive management measures;

rationing and rotating blackouts may lead to • challenges in subway operations and efficiency.

Rising temperatures may increase the risk • of heat-related illnesses and inhibit decision-making, increasing the likelihood of injuries, accidents, and fatalities and decreasing w orker productiv ity

Flooding may also affect employee safety on-site and on roads. Climate change induced flooding and storm surges could potentially flood subway tunnels, severely impacting mobility and economic activity

- Integrate climate-compatible development into initiatives for sustainable local benefit from Project operations; and
- Initiate cross-industry collaboration on regional adaptation strategies.

		impacting mobility and economic activity
Construction,	GHG	Contributions in terms of GHG emissions
Operations	GHG	 Carbon dioxide (CO2) accounts Carbon dioxide (CO2) accounts consideration of fuel and equipment efficiency prior to construction and operation activities; per year) among the three per year) among the three common GHGs associated with the combustion of fossil fuel during the construction phase. This is follow ed by nitrous oxide (N2O) and methane (CH4) with GHG emission shares of 20.07 tonnes of CO2-e and 10.60 tonnes of CO2-e per year, respectively. Scope 1 emissions (direct GHG
		 Scope 1 emissions (direct GHG emissions) total 9,383.46 tonnes of CO2-e per y ear due to the combustion of fossil fuel. Scope 2 emissions (indirect GHG emissions) total 14,497.89 tonnes of CO2-e from the purchase of electricity. For the purchase of electricity. For the annual GHG emissions are implementing carbon diox ide capture and sequestration through progressive Scope 1 emissions (direct GHG increase efficiency, reduce fuel and electricity use, and help reduce costs associated with equipment downtime; 2 emissions (indirect GHG emissions) total 14,497.89 tonnes of CO2-e from the purchase of electricity. For the operations phase, the total annual GHG emissions are

		109,021.00 tonnes of CO ₂ -e per		rehabilitation (within or outside the
		y ear.		project site). This will be undertaken as
				soon as areas for rehabilitation become
				available. Rehabilitation areas will at
				least be equivalent to the areas cleared
				of vegetation through the established
				National Greening Program, and/or the
				carbon sequestration program as
				discussed in Section 2.1.4 of this
				EPRMP; and
			•	Monitoring of carbon release by
				following the frequency of ambient air
				monitoring as discussed in Section
				2.3.3 of this EPRMP.
Construction	Air Quality	Degradation of air quality		
		Fugitive emissions generated from wheel	•	Fugitive dust from vehicular traffic and
		entrained dusts, dusts generated from		material handling activities will be
		unpaved roads, storage and handling of		controlled by management of vehicle
		construction material, and wind erosion from		speeds and application of regular water
		exposed surfaces and construction material		suppression to unpaved roads and
		stockpiles may increase the ground level		stockpiles whenever visible dust is
		concentration of dusts (TSP and PM10) in		observ ed;
		the area.	•	Trucks and vehicles that deliver
		The project is not expected to significantly		construction material should be covered
		affect the air quality during its operations		to prevent potential fugitive emissions o
		phase.		dust;
		L	•	Regular ambient air quality monitoring
				will be performed in all monitoring
				stations as shown in Error! Reference
				source not found.; and
			•	Workers will be provided with the
				appropriate personal protective
				equipment pursuant to BWC-DOLE
				Occupational Safety and Health
				Standards (Department of Labor and
				Employment, 1989) to protect them
				from disease associated with dusts.
Construction			_	
Construction	Air Quality	Particulates and gaseous pollutants may	•	Requiring sub-contractors to undergo
		be emitted through fossil fuel consumption		and pass the gov ernment vehicle
		of construction equipment which may		emission tests prior to contract aw ard;

increase the Ground Level Concentrations • Ex haust fumes from vehicles, (GLCs) of the identified pollutants. construction equipment, and other fuel burning equipment will be managed through the use of low sulphur fuel

where possible;

- Traffic management guidelines will be incorporated in worker's and subcontractor's induction seminar. Guidelines will include control in vehicle speed and spraying of road routes and work sites as well as transport routes near the host communities;
- Fuel efficiency will be maximised through scheduling of vehicle and equipment movements in order to minimise both idle time and distances travelled;
- Equipment and vehicle loadings will be optimised through accurate monitoring and calculation of fuel requirements in order to reduce fuel weight and improve fuel efficiency;
- Vehicles and construction equipment will be regularly maintained in order to increase efficiency, reduce fuel use, and help reduce costs associated with equipment downtime;
- Equipment dispatch will be monitored closely in order to eliminate unnecessary use and to increase efficiency of use;
- Standard occupational health and safety practices will be implemented pursuant to BWC-DOLE Occupational Safety and Health Standards (Department of Labor and Employment, 1989); and
- Regular ambient air quality monitoring will be performed in all monitoring stations as shown in Error! Reference source not found..

Construction	Ambient Noise	Increase in ambient noise level	
		Increase in noise level and ground vibration	Using equipment or machines that
		due to operations of construction machinery,	produce lesser noise, or considerations
		which may cause disturbance to	in using mufflers to minimize noise.
		construction workers and nearby	Strategic scheduling of activities per
		communities.	period within a day to minimize effects o
			noise on nearby residents/public areas.
			Maintenance of equipment or
			machineries used during construction to
			minimize possible loud noises due to
			equipment damage.
			Conducting a construction noise
			assessment during the preconstruction
			stage to determine the noise levels on
			the areas surrounding the construction
			site, and the predicted noise levels
			coming from equipment and
			machineries.
			Construction of wall enclosures on
			areas that produce a lot of noise to
			minimize disturbance within the
			immediate area.
			 Continuous monitoring of ambient noise
			levels on the monitoring sites for impact
			mitigation purposes.
Construction	Noise	May cause hearing problems to workers	Strictly implementation of Personal
Concluctor		who operate nearby machineries or	Protective Equipment (PPE), such as
		equipment that produce extremely loud	ear muffs and ear plugs, during work
		noise.	hours for the safety of the workers.
			 Taking note of equipment/machines that
			produce extremely loud noises (bey ond
			tolerable levels – 85 decibels (Fink,
			2017)) and keeping these areas off
			limits from workers for their safety.
			 Implementing permissible noise levels
			for construction workers as suggested
			by Department of Labor and
Construction	Noise	May cause hearing problems to nearby	Employ ment (DOLE).Active response of LGU through

		groups, and the public.	vulnerable groups, and massive public information for those areas that can produce noise level bey ond tolerable limits of human ears.	
Operations	Noise	May inadvertently cause mental stress to residents near the project location due to the noise from structures and ground vibration.	 Considerations in the design and operations of the subw ay to minimize vibration, such as noise barriers. Continuous monitoring and survey for complaints from residents nearby the areas to assess the extent of the disturbance coming from the vibrations during operations. 	
Construction,	The People	Displacement of setter/s / disturbance of prop	operties	
operation		Impacts on people displaced along the East Service Road	Resettlement Action Plan development and implementation	
Operation	The People	Community safety and security		
		The sheer amount and diversity of passengers using the Entrance / Exit Points suggest that some of them could intrude into the vicinities and areas beyond with no legitimate purpose and even engage in anti- social activities thereby posing a risk to legitimate residents and workers.	 Installation of security cameras at strategic places and instituting visible police presence. Local residents and workers engaged to be more security and safety conscious Dev elopment of quick response emergency teams drawn from office workers and residents 	
Construction,	The People	Change / conflict in land ownership		
Operation		Displacement of their constituents; break-up of communities; diminution of community amenities; transparency of information.	Transparency of Information; consider Use Value and Exchange Value orientation of stakeholders in engaging them	
Construction,	The People	Impacts on cultural heritage		
Operation		Although the alignment passes near cultural heritage sites the construction and operation is not likely to impact these sites	 Assessment of "interior Design' aspects of the Nutrition Center of the Philippines A photo-documentation of the entire 'interior design' should also be made to serv e as a historical memory. 	
Construction	The People	Traffic congestion during construction		
		Because of the mobilization of heavy vehicles and equipment, construction activities, and staging of construction works, restriction on some roadways and sidewalks will be unavoidable. This will lead to	 Development and implementation of a Traffic Management Plan (TMP) Rerouting/diverting traffic where possible 	

		increased traffic congestion and changes in • traffic patterns during construction. Motorists, cyclists, and pedestrians might	Use of construction methods to limit the disturbance to existing roadways during the construction of stations
		alter their trip routes to their inconvenience in order to avoid heavy traffic in the	
		construction areas.	
Operation	The People	Increase in roadside friction along road adjacent	to stations
		Commuters are likely to wait, load and •	Conversion of the construction yard
		unload to and from other modes of road	areas into facilities with sidewalks, tax i
		transport, impeding the flow of traffic.	bays, loading and unloading stations or
			intermodal central terminal stations for
			interconnectivity with mass transit and
			public utility vehicles.