ENVIRONMENTAL PERFROMANCE REPORT AND MANAGEMENT PLAN (EPRMP)

NCC Cement Plant and Quarry Operation Expansion Project

Barangay Labayug, Sison, Pangasinan

Submitted by:

Submitted to: Environmental Management Bureau – Central Office

August 2019

An Environmental Report By:

Submitted To:

Department of Environment and Natural Resources Environmental Management Bureau EMB Building, DENR Compound, Visayas Avenue

Diliman, Quezon City

DOCUMENT TRACKING

Version Report		Checked By:		Approved By:		
No.	Compiled By:	Name	Signature	Name	Signature	Date
0	KG Bartolome	JM Lim		JM Lim	1 Lim	
	PC Go					
	JB Leano					
1						
2						
		Distribution of Latest Version				
No. of Copies	Submitted To:	Date Submitted	Received By:		: Remarks:	
	EMB-CO					
	Northern Cement Corporation					
	LCI Envi Corp.					

© August 2019

Table of Contents

EXECUTIVE	SUMMARY	i
Project Fa	act Sheet	i
Process D	ocumentation	iii
Terms	of Reference for the EPRMP Study	iii
Scope	of the EPRMP Study	iii
EPRMF	PTeam	iii
EPRMP S	tudy Schedule & Area	iv
EPRMF	P Study Schedule	iv
EPRM	9 Study Area	iv
EPRM	PMethodologies	v
Scopin	g and Public Participation	vi
EPRMP S	ummary	vi
Summa	ary of Alternatives	vi
Key Fir	ndings of the Environmental Baseline Studies	vii
Integra	ted Summary of Impacts and Residual Effects After Mitigation	viii
Risks a	nd Uncertainties	x
1 PROJEC	CT DESCRIPTION	1-1
1.1 Pr	oject Location and Area	1-2
1.1.1	Project Location	1-2
1.1.2	Project Area	
1.1.3	Project Impact Areas	1-4
1.1.4	Accessibility of the Project Site	
1.2 Pr	oject Rationale	1-9
	oject Alternatives	
	Site Selection	1-10
1.3.2	Technology Selection	
1.3.3	Resources and Alternative Fuels	
1.3.4	No Project Option	
	oject Components	
1.4.1	Major Components	
1.4.2	Support Facilities	
1.4.3	Temporary Facilities (During Construction)	
1.4.4	Pollution Control Devices	
1.4.5	Access Road	
1.4.6	Alternative Fuel	
1.5 Pr	ocess/Technology	1-27

	1.5	.1	Raw Materials	1-29
	1.5	.2	Quarry Operation	1-33
	1.5	.3	Cement Plant Operation	1-36
	1.6	Proj	ect Utilities	1-39
	1.6	.1	Water Supply and Demand	1-39
	1.6	.2	Power Supply and Demand	1-42
	1.7	Proj	ect Size	1-42
	1.7	.1	Cement Production	1-42
	1.7	.2	Allowable Quarry Area	1-42
	1.8	Dev	elopment Plan, Description of Project Phases and Corresponding Timefram	es1-43
	1.8	.1	Pre-Construction	1-43
	1.8	.2	Construction Phase	1-43
	1.8	.3	Operations	1-43
	1.8	.4	Abandonment	1-43
	1.9	Mai	npower	1-46
	1.10	Proj	ect Cost	1-46
2	ASS	SESSIV	IENT OF ENVIRONMENTAL IMPACTS	2-1
	2.1	The	Land	2-1
	2.1	.1	Land Use and Classification	2-1
	2.1	.2	Geology/Geomorphology	2-5
	2.1	.3	Pedology / Soil	2-17
	2.1	.4	Terrestrial Ecology	2-21
	2.1	.5	Summary of Baseline Findings, Impacts and Mitigation on Land	2-43
	2.2	The	Water	2-45
	2.2	.1	Hydrology/Hydrogeology	2-45
	2.2	.2	Oceanography	2-48
	2.2	.3	Water Quality	2-48
	2.2	.4	Freshwater Ecology	2-56
	2.2	.5	Marine Ecology	2-60
	2.2	.6	Summary of Baseline Findings, Impacts and Mitigation on Water	2-60
	2.3	The	Air	2-62
	2.3	.1	Meteorology/Climatology	2-62
	2.3	.2	Air Quality (& Noise)	2-73
	2.3	.3	Summary of Baseline Findings. Impacts and Mitigation on Air and Noise	2-101
	2.4	The	People	2-102
	2.4	.1	Displacement of settler/s	2-105
	2.4	.2	In-migration	2-107
	2.4	.3	Cultural/Lifestyle Change (especially on Indigenous People, if any)	2-108

	2.4.	4	Impacts on Physical Cultural Resources	2-109	
	2.4.	2.4.5 Threat to Delivery of Basic Services/Resource Competition		2-109	
2.4.6		6	Threat to Public Health and Safety	2-111	
	2.4.7		Generation of Local Benefits from the Project	2-116	
	2.4.	8	Traffic Congestion	2-119	
	2.4.	9	Social Acceptability and Perception	2-120	
	2.4.	10	Summary of Baseline Findings, Impacts and Mitigation on People	2-122	
3	EN\	/IRON	IMENTAL MANAGEMENT PLAN	3-1	
	3.1	Imp	acts during Construction Phase	3-1	
	3.1.	1	Physical Environment	3-1	
	3.1.	2	Biological Environment	3-3	
	3.1.	3	Socio-Economy	3-3	
	3.1.	4	Health and Safety	3-3	
	3.2	Imp	acts during Operational Phase	3-4	
	3.2.	1	Physical Environment	3-4	
	3.2.	2	Biological Environment	3-5	
	3.2.	3	Socio-Economy	3-6	
	3.3	Una	voidable and Residual Impacts	3-6	
	3.4	Sum	nmary Matrix of Environmental Impact and Level of Significance	3-6	
	3.5	Con	struction Environmental Program	3-19	
	3.6	Soli	d Waste Management	3-21	
	3.7	Haz	ardous Waste Management	3-21	
	3.8	Scra	aps Management	3-22	
	3.9	Осс	upational Health and Safety	3-22	
	3.10	Han	dling and Blasting Procedure	3-23	
	3.11	Air I	Emission Management	3-23	
	3.12	Veh	icular Traffic Management	3-23	
	3.13	Disa	aster Risk Reduction (DRR) and Climate Change Adaptation (CCA)	3-24	
4	EN\	/IRON	IMENTAL RISK ASSESSMENT & EMERGENCY RESPONSE POLICY AND GUIDELIN	IES4-1	
	4.1	Met	hodology	4-1	
	4.2	Risk	Screening Level	4-1	
	4.3	Risk	Identification and Analysis	4-1	
	4.3.	1	Hazards from Ammonium Nitrate Fuel Oil (Hazardous Material)	4-1	
	4.3.	2	Natural Hazards	4-2	
	4.3.	3	Man-Made Hazards	4-2	
	4.3.	4	Air Pollutants Hazards	4-3	
	4.4	Ider	ntification of Potential Emergencies	4-3	
	4.5	Eme	nergency Plan4-5		

	4.6	Safety and Health Program4-11			
	4.6.	1 Leadership and Administration	4-11		
	4.6.2	2 Accident/Incident Investigation Reporting	4-11		
5	SOC	IAL DEVELOPMENT PLAN/FRAMEWORK AND IEC FRAMEWORK	5-1		
	5.1	Social Development Program (SDP)	5-1		
	5.2	Social Development and Management Program (SDMP)	5-5		
	5.2.	SDMP Implementation Highlights for 2013 to 2017	5-8		
	5.3	Information and Education Campaign (IEC)	5-8		
	5.4	Grievance Redress Mechanism (GRM)	5-13		
	5.4.	1 General Principles of the Grievance Redress Mechanism	5-13		
	5.4.2	2 Levels of Grievance Redress Mechanism	5-13		
	5.4.3	3 Grievance Redress Mechanism Steps	5-14		
6	ENV	IRONMENTAL COMPLIANCE MONITORING	6-6		
	6.1	Environmental Performance	6-6		
	6.2	Self-Monitoring Plan	6-6		
	6.3	Multi-Sectoral Monitoring Framework	6-12		
	6.4	Complaints Management	6-14		
	6.5	Environmental Guarantee and Monitoring Fund Commitments	6-15		
7	DEC	OMMISSIONING/ABANDONMENT/REHABILITATION POLICY	7-1		
	7.1	Post-Construction Decommissioning	7-1		
	7.2	Project Decommissioning/Abandonment	7-1		
8	INST	TITUTIONAL PLAN FOR EMP IMPLEMENTATION			

List of Figures

Figure 1-1: General Location Map of the Proposed Project	1-6
Figure 1-2: Primary and Secondary Impact Areas	
Figure 1-3: Accessibility Map of the Proposed Project Site	
Figure 1-4: Plant Layout for the NCC Line 1 and Line 2 Expansion Project	
Figure 1-5: Support Facilities for Quarry Operation	1-16
Figure 1-6: Wastewater Flow Diagram in NCC	
Figure 1-7: Drainage Plan for Quarry Area	1-21
Figure 1-8: Stormwater Drainage Plan for NCC Line 1 and Line 2	1-22
Figure 1-9: Sewer Layout for NCC Line 1 and Line 2	1-23
Figure 1-10: Location of Effluent Outfalls	1-24
Figure 1-11: Process Diagram of Cement Production	
Figure 1-12: Material Balance for NCC Line 1 and Line 2 Cement Plant and Quarry Operation	1-31
Figure 1-13: Energy Balance for NCC Line 1 and Line 2	
Figure 1-14: Slice Plan for Limestone Quarry (2016-2020)	1-34
Figure 1-15: Slice Plan for Shale Quarry (2016-2020)	
Figure 1-16: Entry Point of Alternative Fuel in Pyro-Processing	
Figure 1-17: Water Balance of the Proposed Cement and Quarry Expansion Project	
Figure 2-1: Administrative Map of the Municipality of Sison	
Figure 2-2: Municipal Land Use of Sison	
Figure 2-3: Geologic Map of Project Area	
Figure 2-4: Topographic Map of Project Area	
Figure 2-5: Slope Map of the Project Area	
Figure 2-6: Distribution of Active Line Faults and Trenches of Region 1	
Figure 2-7: Earthquake-induced Landslide Susceptibility Map of Region 1	
Figure 2-8: Liquefaction Hazard Map of Pangasinan	
Figure 2-9: Landslide and Flood Hazard Map of Labayug Quadrangle	
Figure 2-10: Active and Potentially Active Volcanoes in the Philippines	
Figure 2-11: Tsunami Hazard Map of Pangasinan	
Figure 2-12: Soil Map	
Figure 2-13: Soil Sampling Map	
Figure 2-14: Location of Flora Sampling Sites	
Figure 2-14: Location of Hora Sampling Sites	
Figure 2-16: Location of Reforestation Areas under MFP	
Figure 2-17: Locations of Faunal Sampling Sites	
Figure 2-17: Locations of Avifauna Sampling Sites	
Figure 2-19: Watershed Catchment Area of Aloragat River	
Figure 2-20: Creeks near the Proposed Project Site	
Figure 2-20: Creeks hear the Proposed Project Site	
Figure 2-21: Location Map of Surface Water Sampling Point	
Figure 2-22: Edition Map of Surface Water Sampling Points Figure 2-23: pH Monitoring Results (OWS effluent, 2016 - 1st quarter 2019)	
Figure 2-24: TSS Monitoring Results (OWS effluent, 2016 - 1st quarter 2019)	
Figure 2-25: Oil and Grease Monitoring Results (OWS effluent, 2016 - 1st quarter 2019)	
Figure 2-26: Location Map of Freshwater Ecology Monitoring Stations	
Figure 2-27: Relative Abundance of Benthic Macroinvertebrates	
Figure 2-28: Climate Map of the Philippines	
Figure 2-29: Frequencies of Tropical Cyclones in the Philippines	
Figure 2-30: PAGASA Climate Projection for 2020 and 2050	
Figure 2-31: Ambient Air Quality Monitoring Stations	
Figure 2-32: Ambient TSP Monitoring Results	2-75

Figure 2-33: Source Emissions Monitoring Results (TSP)2-76
Figure 2-34: Model Domain of the Study Area2-83
Figure 2-35: Wind Rose Diagram in Project Area2-84
Figure 2-36: Digitized Terrain Map of the Study Area2-85
Figure 2-37: Sources of Particulate Matter in the Study Area2-87
Figure 2-38: Isopleth of the incremental 98 th percentile annual average TSP concentration (µg/m ³) 2-89
Figure 2-39: Isopleth of the incremental 98 th percentile annual average PM10 concentration (μ g/m ³)
Figure 2-40: Isopleth of the incremental 98^{th} percentile 8-hour average CO concentration ($\mu g/m^3$)
Figure 2-41: Isopleth of the incremental 98^{th} percentile annual average SO_2 concentration ($\mu g/m^3$) 2-93
Figure 2-42: Isopleth of the incremental 98 th percentile annual average NO ₂ concentration (μg/m ³) 2-94
Figure 2-43: Isopleth of the incremental 98 th percentile annual average lead concentration (μg/m ³)
Figure 2-44: Isopleth of the incremental 98 th percentile 30-minute average arsenic, cadmium,
antimony, and lead concentration (μ g/m ³)
Figure 2-45: Ambient Noise Level Sampling Map2-99
Figure 2-46: Ambient Noise Level Monitoring Results
Figure 2-47: Summary of the Respondents' Perception
Figure 3-1: Construction Management Framework
Figure 4-1: Emergency Response Plan
Figure 5-1: Levels of Grievance Redress Mechanism
Figure 6-1: Storage Facilities Within NCC Cement Plant
Figure 6-2: Photos of Rehabilitation Activities within the Shale Quarry Area outside the MPSA6-6
Figure 6-3: Monitoring Stations for NCC
Figure 6-4: MMT Complaints and Grievance Mechanism6-15
Figure 8-1: Organizational Chart for the Institutional Plan8-2
Figure 8-2: Framework of Organizational Set-up for Environment Concerns

List of Tables

Table 1-1: Basic Information on the Proposed Project, Proponent, and EIA Preparer	1-2
Table 1-2: Coordinates of the NCC Cement Plant Complex	1-3
Table 1-3: Coordinates of the Exiting Quarry Area	1-3
Table 1-4: Proximity of Other Plants with the Project Area	1-4
Table 1-5: Comparison of Anticipated Environmental Impacts of Project Alternatives	1-10
Table 1-6: List of Existing and Additional Project Components for NCC Cement Plant and Qu	arry1-12
Table 1-7: Shared Facilities with San Miguel Northern Cement Inc.	1-13
Table 1-8: Existing and New Air Pollution Sources with Corresponding Control Facilities of N	ICC Line 1
and Line 2	1-18
Table 1-9: Location and Capacities of Water Pollution Control Facilities	1-19
Table 1-10: Controlled Chemicals and Hazardous Wastes to be generated by the Project	1-25
Table 1-11: Hazardous Wastes Generated by NCC Line 1 and Line 2	1-25
Table 1-12: Proposed Alternative Fuels for NCC Line 1 and Line 2 Cement Plant	1-27
Table 1-13: Annual Raw Material Requirement for NCC Cement Plant	1-29
Table 1-14: Quarry Slope and Contour Canal Design	1-33
Table 1-15: NWRB permits for NCC's water supply	1-39
Table 1-16: Ponds and Reservoir of NCC	1-39

Table 1-17: Water Requirement for the Proposed Cement Plant and Quarry Expansion Project	t1-39
Table 1-18: New Clinker and Cement Production Capacity of NCC Line 1 and Line 2	1-42
Table 1-19: NCC Limestone and Shale Quarry Production	1-42
Table 1-20: Indicative Timeline of Activities	1-45
Table 1-21: Manpower Requirement	1-46
Table 2-1: Land Area of Region 1, Province of Pangasinan, Sison, and Brgy. Labayug	2-1
Table 2-2: Land Use Distribution, Municipality of Sison	2-1
Table 2-3: Soil Analysis Results	
Table 2-4: Importance Value of the trees surveyed	2-25
Table 2-5: Computed Frequency (f) in the Intermediate Layer	2-27
Table 2-6: Computed Frequency in the Ground Cover	2-28
Table 2-7: Biodiversity Indexes based from Shannon-Wiener diversity H'	2-28
Table 2-8: List of Flora Species and its corresponding Conservation Status	2-29
Table 2-9: Nurseries in NCC	2-30
Table 2-10: Seedlings inventory in NCC (March 2019)	2-30
Table 2-11: Survival Rate of MFP Reforestation Activities (as of December 2018)	2-31
Table 2-12: Survival Rate of NGP Reforestation Activities	2-31
Table 2-13: Description and geographic location of selected observation sites	2-35
Table 2-14: The Fernando Biodiversity Scale (1998)	2-36
Table 2-15: Abundance and Frequency of Bird Species observed within the Sampling Sites	
Table 2-16: Conservation Status and Endemicity of Observed Birds	
Table 2-17: List of Mammal Species observed within the Study Area	
Table 2-18: List of Herpetofauna Species observed within the Study Area	
Table 2-19: Computed Biodiversity Index of Each Sampling Sites	
Table 2-20: Summary of Significant Baseline Findings and Potential Impacts and Mitigation or	
, , , , , , , , , , , , , , , , , , , ,	
Table 2-21: Results of Ground Water Quality Analysis	2-49
Table 2-22: Results of Surface Water Quality Analysis	
Table 2-23: Taxonomic Listing, Abundance and Distribution of Freshwater Benthic	
Macroinvertebrates	2-56
Table 2-24: Summary of Significant Baseline Findings and Potential Impacts and Mitigation or	n Water
, , , , , , , , , , , , , , , , , , , ,	
Table 2-25: Mean Historical Monthly Temperature and Rainfall Data (1981-2010)	
Table 2-26: Climatological Extremes Dagupan City, Pangasinan (as of 2018)	
Table 2-27: PAGASA Climate Projection for 2020 and 2050	
Table 2-28: Scope 1 Potential Emission Data	
Table 2-29: Scope 2 Potential Emissions	
Table 2-30: Phase 1, Scope 3 Potential Emission Data	
Table 2-31: Estimated Particulate Emissions	
Table 2-32: Estimated Gaseous Emissions	
Table 2-33: Ambient Air Quality Laboratory Results (2016, 2019)	
Table 2-34: Concentrations of Pollutants	
Table 2-35: Description of the stacks from the proposed project (from SMR 1Q2019)	
Table 2-36: Emission rates (g/s) from the Cement Plant and Quarry Operations	
Table 2-37: Suspended Particulates Sources	
Table 2-37: Suspended Particulates Sources	
Table 2-38: Predicted incremental maximum GLC of gaseous emissions in the study area	
Table 2-39: Predicted incremental maximum GLC of gaseous emissions in the study area Table 2-40: Best Available Control Technology (BACT) for each pollutant	
Table 2-40: Best Available Control Technology (BACT) for each pollutant Table 2-41: Predicted incremental maximum GLC of gaseous emissions in the study area	
Table 2-41: Predicted incremental maximum GLC of gaseous emissions in the study area Table 2-42: Summary of Significant Baseline Findings and Potential Impacts and Mitigation of	
and Noise	

Table 2-43: Population of Sison per Barangay, 2015	2-102
Table 2-44: Population of Pozorrubio per Barangay, 2015	2-103
Table 2-45: Housing Characteristics for Sison and Pozorrubio, 2015	2-105
Table 2-46: Land Tenure in the Project Impact Area	2-106
Table 2-47: Housing Tenure in the Project Impact Area	2-106
Table 2-48: Type of Housing Structure/Make in the Project Impact Area	2-107
Table 2-49: Place of Origin of Household Heads in the Project Impact Area	2-108
Table 2-50: Religious Affiliations of the Household Heads in the Project Impact Area	2-108
Table 2-51: Drinking Water Supply Sources of Surveyed Households in the Project Impact Area .	2-110
Table 2-52: Sanitary Toilet Facility of Households in the Project Impact Area	2-110
Table 2-53: Existing Road Network in Sison	2-110
Table 2-54: Academic Institutions in Sison	2-111
Table 2-55: Educational Profile of the Household Heads in the Project Impact Area	2-111
Table 2-56: Leading Causes of Morbidity in Sison (2014-2018)	2-112
Table 2-57: Leading Causes of Morbidity in NCC Impact Barangays (2014-2018)	2-113
Table 2-58: Leading Causes of Mortality in Sison (2014-2018)	2-113
Table 2-59: Common Diseases that Affect the Households in the Project Impact Area	
Table 2-60: Safety Statistics of NCC and its Contractors (2018)	2-114
Table 2-61: Safety Statistics of NCC and its Contractors (2019)	
Table 2-62: Income Sources of Households in the Project Impact Area	
Table 2-63: Income Profile of Households in the Project Impact Area	
Table 2-64: Barangay Residences of NCC Employees (Sison, Pangasinan)	
Table 2-65: NCC Contractors (with Employees)	
Table 2-66: Barangay Residences of NCC Contractors (Sison and Pozorrubio, Pangasinan)	
Table 2-67: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on P	eople
Table 2-67: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on P	
	2-122
	.2-122 3-2
	.2-122 3-2 3-2
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)	.2-122 3-2 3-8
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures	2-122 3-2 3-2 3-8 4-1
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix	2-122 3-2 3-8 4-1 4-4
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix Table 4-2: Emergency Scenarios for the Project	2-122 3-2 3-2 3-8 4-1 4-4 4-8
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix Table 4-2: Emergency Scenarios for the Project Table 4-3: Emergency Response Procedures for Different Scenarios	2-122 3-2 3-8 4-1 4-4 4-8 4-10
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating MeasuresTable 4-1: Risk Screening MatrixTable 4-2: Emergency Scenarios for the ProjectTable 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working TeamsTable 5-1: Matrix of Social Development Plan	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix Table 4-2: Emergency Scenarios for the Project Table 4-3: Emergency Response Procedures for Different Scenarios Table 4-4: Roles and Responsibilities in the Emergency Working Teams	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix Table 4-2: Emergency Scenarios for the Project Table 4-2: Emergency Response Procedures for Different Scenarios Table 4-3: Emergency Response Procedures for Different Scenarios Table 4-4: Roles and Responsibilities in the Emergency Working Teams Table 5-1: Matrix of Social Development Plan Table 5-2: Allocation per Barangay (2013-2017) Table 5-3: Rationalization of SDMP	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A).Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures.Table 4-1: Risk Screening Matrix.Table 4-2: Emergency Scenarios for the Project.Table 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working Teams.Table 5-1: Matrix of Social Development Plan.Table 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017).	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A) Table 3-2: DENR Standards for Noise Levels in General Areas, db(A) Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures Table 4-1: Risk Screening Matrix Table 4-2: Emergency Scenarios for the Project Table 4-2: Emergency Response Procedures for Different Scenarios Table 4-3: Emergency Response Procedures for Different Scenarios Table 4-4: Roles and Responsibilities in the Emergency Working Teams Table 5-1: Matrix of Social Development Plan Table 5-2: Allocation per Barangay (2013-2017) Table 5-3: Rationalization of SDMP	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating MeasuresTable 4-1: Risk Screening MatrixTable 4-2: Emergency Scenarios for the ProjectTable 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working TeamsTable 5-1: Matrix of Social Development PlanTable 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017)Table 5-5-5: IEC Implemented by NCC (2017 to 2019)	2-122 3-2 3-8 4-1 4-4 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A).Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures.Table 4-1: Risk Screening Matrix.Table 4-2: Emergency Scenarios for the Project.Table 4-3: Emergency Response Procedures for Different ScenariosTable 4-3: Emergency Response Procedures for Different ScenariosTable 5-1: Matrix of Social Development Plan.Table 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017)Table 5-5-5: IEC Implemented by NCC (2017 to 2019)Table 5-5-7: Grievance Redress Mechanism.	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-14
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A).Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures.Table 4-1: Risk Screening Matrix.Table 4-2: Emergency Scenarios for the Project.Table 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working Teams.Table 5-1: Matrix of Social Development Plan.Table 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017)Table 5-5-5: IEC Implemented by NCC (2017 to 2019)Table 5-5-6: Matrix of the Project's IEC PlanTable 5-5-7: Grievance Redress Mechanism.Table 5-1: Compliance of NCC to ECC Compliance	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-14 6-6
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A).Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating Measures.Table 4-1: Risk Screening Matrix.Table 4-2: Emergency Scenarios for the Project.Table 4-3: Emergency Response Procedures for Different ScenariosTable 4-3: Emergency Response Procedures for Different ScenariosTable 5-1: Matrix of Social Development Plan.Table 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017)Table 5-5-5: IEC Implemented by NCC (2017 to 2019)Table 5-5-7: Grievance Redress Mechanism.	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-14 6-6 6-7
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-14 6-6 6-7 6-12
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A).Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating MeasuresTable 4-1: Risk Screening Matrix.Table 4-2: Emergency Scenarios for the Project.Table 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working Teams.Table 5-1: Matrix of Social Development Plan.Table 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2013-2017)Table 5-5-5: IEC Implemented by NCC (2017 to 2019)Table 5-5-6: Matrix of the Project's IEC PlanTable 5-5-7: Grievance Redress Mechanism.Table 6-1: Compliance of NCC to ECC ComplianceTable 6-2: Matrix of Environmental Monitoring Plan (EMOP)Table 6-3: Monitoring Stations for NCC.	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-7 5-10 5-11 5-14 6-6 6-7 6-12 6-13
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)Table 3-3: Summary Matrix of Environmental Impacts and Mitigating MeasuresTable 4-1: Risk Screening MatrixTable 4-2: Emergency Scenarios for the ProjectTable 4-3: Emergency Response Procedures for Different ScenariosTable 4-4: Roles and Responsibilities in the Emergency Working TeamsTable 5-1: Matrix of Social Development PlanTable 5-2: Allocation per Barangay (2013-2017)Table 5-3: Rationalization of SDMPTable 5-5-4: SDMP and ASDMP of NCC (2017 to 2019)Table 5-5-6: Matrix of the Project's IEC PlanTable 5-5-7: Grievance Redress MechanismTable 6-1: Compliance of NCC to ECC ComplianceTable 6-2: Matrix of Environmental Monitoring Plan (EMoP)Table 6-3: Monitoring Stations for NCCTable 6-4: List of Members and Respective Roles of the MMT for NCC quarry	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-14 6-6 6-7 6-12 6-13 6-13
Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)	2-122 3-2 3-8 4-1 4-4 4-8 4-10 5-3 5-5 5-5 5-7 5-10 5-11 5-11 5-14 6-13 6-13 6-13

List of Annexes

- Annex 1: Accountability Statements of Preparers and Proponent
- Annex 2: Project Environmental Monitoring & Audit Prioritization Scheme (PEMAPS)
- Annex 3: SEC Registration
- Annex 4: Environmental Compliance Certificate 9207-032-301C
- Annex 5: Environmental Compliance Certificate 9909-106-105
- Annex 6: Mineral Production Sharing Agreement (MPSA)
- Annex 7: Mineral Reserve Report
- Annex 8: Agreement between NCC and SMNCI
- Annex 9: Laboratory Analysis Results
- Annex 10: Compliance Reports and Permits
- Annex 11: Final Mine Rehabilitation and/or Decommissioning Plan
- Annex 12: Social Development and Management Program
- Annex 13: Bank Certificate
- Annex 14: Public Consultation Documentation Report
- Annex 15: ISO Certificates
- Annex 16: Emergency and Contingency Program
- Annex 17: ANFO Blasting, Transport, Storage and Handling Procedure
- Annex 18: Perception Survey

List of Acronyms

AERMIC	-	American Meteorological Society/EPA Regulatory Model Improvement Committee
BACT	_	Best and Available Control Technology
BFAR	-	Bureau of Fisheries and Aquatic Resources
BMB	-	Biodiversity Management Bureau
BLGU	-	Barangay Local Government Unit
CAA	-	Clean Air Act
CADC	_	Certificate of Ancestral Domain Claim
CADC	-	Certificate Ancestral Domain Title
CALC	-	Certificate of Ancestral Land Claim
	-	Certificate of Ancestral Land Title
CALT	-	
CARP	-	Comprehensive Agrarian Reform Program
CBFMA	-	Community-Based Forest Management Agreement
CENRO	-	Community Environment and Natural Resources Office
CMR	-	Compliance Monitoring Report
DENT	-	Department of Environment and Natural Resources
DIA	-	Direct Impact Area
DIV		Dutch Intervention Values
DOLE	-	Department of Labor and Employment
ECC	-	Environmental Compliance Certificate
EGF	-	Environmental Guarantee Fund
EIA	-	Environmental Impact Assessment
EIS	-	Environmental Impact Statement
EMB	-	Environmental Management Bureau
EMP	-	Environmental Monitoring Fund
EMoP	-	Environmental Monitoring Plan
GHG	-	Greenhouse Gas
GLC	-	Ground-Level Concentration
GPS	-	Global Positioning System
IEC	-	Information and Education and Communication
IFMA	-	Integrated Forest Management Agreement
IIA	_	Indirect Impact Area
IRR	_	Implementing Rules and Regulations
КВА	-	Key Biodiversity Area
	-	Kilowatts
kW	-	
kWh	-	Kilowatt hour
LCI	-	LCI Envi Corporation
MASL	-	Meters above sea level
MENRO	-	Municipal Environment and Natural Resources Office
MGB	-	Mines and Geoscience Bureau
МНО	-	Municipal Health Officer
MMTPY	-	Million Metric Tons per Year
NAAQS	-	National Ambient Air Quality Standards
NAAQGV	-	National Ambient Air Quality Guideline Values
NCC	-	Northern Cement Corporation
NESSAP	-	National Emission Standard for Source Specific Air Pollutants
NGOs	-	Non-Government Organizations
NIPAS	-	Network of Integrated Protected Areas System
nm	-	Nanometer
NOAH	-	Nationwide Operational Assessment of Hazards
NPCC	-	National Pollution Control Commission
NSCB	-	National Statistical Coordination Board
NWRB	-	National Water Resources Board
PAGASA	-	Philippine Atmospheric, Geophysical, and Astronomical Services Administration
		prine removalence, ecophysical, and rationormical services Automisti ation

PAR	-	Philippine Area of Responsibility
PAWB	-	Protected Areas and Wildlife Bureau
PBL	-	Planetary Boundary Layer
PDR	-	Project Description Report
PEISS	-	Philippine Environmental Impact Statement System
PENRO	-	Provincial Environment and Natural Resources Office
PHILVOCS	-	Philippine Institute of Volcanology and Seismology
PM	-	Particle Matter
PNSDW	-	Philippine National Standards for Drinking Water
PPS	-	Personal Protective Equipment
PSA	-	Philippine Statistics Authority
PSR	-	Public Scoping Report
RHU	-	Rural Health Unit
SB	-	Sangguniang Bayan
SBCs	-	Sensitive Biological Communities
SDP	-	Social Development Program
SMNCI	-	San Miguel Northern Cement, Inc.
SMR	-	Self-Monitoring Report
SRTM	-	Shuttle Radar Topography Mission
SWMP	-	Solid Waste Management Program
TSP	-	Total Suspended Particles
UN	-	United Nations

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

Project Fact Sheet			
Name of Project	NCC Cement Plant and Quarry Expansion Project		
Project Location	Province of Pangasinan, I	Municipality of Sison, Baran	gay Labayug
Project Category & Type (based on Annex A of MC 2014- 005 Guidelines)	Cement Plant with Quarrying		
Project Size	Cement Plant Clinker Production		tion
	Existing Line 1 & 2 Pr	oduction Proposed	New Line1&2 Production
	Capacity		Capacity
	4,000 TPD (1.28 MMT	PY) Clinker 5,500 TF	D (1.76 MMTPY) Clinker
		Quarry	
	Existing Extraction		ed New Extraction Rate
	2.72 MMTPY Lime		MMTPY Limestone
	0.672 MMTPY S		83 MMTPY Shale
Summary of Major			
Project Components	Component	Existing	Proposed Additional
		Quarry	
	Limestone crushing	2 units x 250 TPH Jaw and	No additional
	system	Impact Crusher	
	Storage Bins	42,000 tons	No additional
		Cement Plant	
	Coal mill/grinding	35 TPH coal grinder	No additional
	system	2 units 25 TPH vertical mil	
		17.8 TPH coal mill	
		40 TPH hammer mill flas	h
		dryer	
		50 TPH coal flash dryer	
		40 TPH ball mill	
	Coal storage	9-bays coal storage	No additional
	Raw material Pre-	75 TPH Roller Crusher	No additional
	blending	300 TPH Swing Hamme	er
		Crusher	
	Raw Mill	2 units 165 TPH hamme	er
		mills	
		2,400 TPH Raw Ball Mill	
	Homogenizing silo	4 units 1,300 TPH	Upgrading and
			rehabilitation of old
			internal parts and blowers
	Pre-heater2 units 4 stage pre-heater		Upgrading and
			modification of 2
			units preheater with
			feed points for AFR
	Gas Conditioning	Old GCT Single flui	10 0
	Tower	Spraying System	spraying system of
			GCT using highly
			efficient Autojet Gas
		Cooling System IIn feeding system 2 units 100 TPH No additional In system 2 units 2 200 TPD Deplecement of	
	Kiln system	2 units 2,200 TPD	Replacement of old
			burner pipe to low-

EXECUTIVE SUMMARY

			NOx German
	Clinker cooler	2 units	FLSmidth burner pipe No additional
	Clinker silo	2 units 25,000 MT	Additional 25,000 MT
		2 units 25,000 init	concrete clinker silo Additional steel clinker silo
	Cement grinding	190 TPH finish ball mill 130 TPD finish ball mill	No additional
	Cement silo	39,000 MT	No additional
	Packaging house	3 units 1,600 TPD rotary packing machines4 units 90 TPH rotary packing machine	No additional
	Bulk loading facility	1 unit 40 TPH 2 units 2,500 MT steel silo	
	Support Facilities	 Medical Clinic Administration Building Machine Shop Warehouse Access Roads Guest house/Staff house Waste heat recovery system Water Treatment Facility Explosive Magazine 	
Project Cost	Php 3.5 Billion		
Construction Period	2019-2020		
Commercial Operation Date	4 th quarter 2020		
Proponent Name	Northern Cement Corporation		
Proponent Authorized	Ms. Rodelia A. Sarrosa		
Representative Proponent Address and	AVP and Support Group	wanager	
Contact Details	155 EDSA, Brgy. Wack-Wack, Mandaluyong City, Metro Manila, Philippines		
EIA Preparer (Consultant)	LCI ENVI CORPORATION		
Preparer Contact Person	Engr. Jose Marie U. Lim, MSc. EIA Team Leader		
Preparer Address and Contact Details	Unit 8L-M Future Point Plaza 3 111 Panay Avenue, South Triangle Quezon City, Metro Manila, Philippines Tel. No.: (632) 442-2830 Fax No.: (632) 961-9226		

EXECUTIVE SUMMARY

Process Documentation

Terms of Reference for the EPRMP Study

- ¹ The Philippine Environmental Impact Statement System (PEISS), under Presidential Decree No. 1586, is a key planning tool for any major project that needs the incorporation of sustainable development. The main purpose of sustainable development activities is to support the project's intended business interest, while preserving or minimizing its negative effects to its surrounding environment and host communities.
- Northern Cement Corporation (NCC) is currently operating a cement plant facility in Barangay Labayug, Sison, Pangasinan. The cement plant facility is composed of two lines (Line 1 and Line 2) with a total clinker production capacity of 4,000 metric tons per day (1.20 Million Metric Tons per Year) or about 6,667 metric tons per day of cement. The operation of the cement plant of the NCC is granted with an Environmental Compliance Certificate Ref. No. 9207-032-301C last January 15, 1993. NCC intends to amend the ECC Ref. No. 9207-032-301C to (1) include the quarry operation that was under ECC Ref. No. 9909-106-105, (2) to increase the limestone and shale production capacity of the quarry and (3) to increase the clinker production capacity of Line 1 and Line 2 to 5,500 metric tons per day.
- ³ The Proponent is required to amend its existing Environmental Compliance Certificate (ECC) from the DENR-EMB prior to any development in the project site. Pre-requisite to the acquisition of amended ECC for the project is the submission of an Environmental Performance Report and Management Plan (EPRMP) as stated on the EMB Memorandum Circular 005-2014 (Revised Guidelines for Coverage Screening and Standardized Requirements under the Philippine EIS System). The EPRMP used the EIS Scoping and Screening Form for Mining Projects as a guide in the impact analysis.

Scope of the EPRMP Study

- ⁴ This Environmental Performance Report and Management Plan (EPRMP) documents how the **Northern Cement Corporation** manages the environmental impacts associated with their existing quarry and cement plant operations and presents additional measure necessary to maintain the environmental compliance with the proposed expansion project.
- ⁵ This EPRMP documented the prevailing environmental conditions in the project area and in its surrounding environment using recent compliance monitoring reports. This will also serve as binding document where **Northern Cement Corporation** presents its updated environmental commitments through a comprehensive environmental management and monitoring plan.
- ⁶ This EPRMP document shall be submitted to the Environmental Management Bureau (EMB) Central Office for review and evaluation. The EPRMP is a prerequisite for the acquisition of the new or amended ECC, that would include the proposed changes of **Northern Cement Corporation**.

EPRMP Team

⁷ LCI Envi Corporation (LCI) was commissioned by Northern Cement Corporation to conduct the EPRMP study for the proposed expansion project. LCI was tasked to prepare, document, and, on behalf of the Proponent, submit to the DENR-EMB all the necessary information related to the proposed Project. The following table presents the EIA Study Team composition.

8

EXECUTIVE SUMMARY

CONSULTANT	EXPERTISE	REGISTRATION NO.
Engr. Jose Marie U. Lim, MSc.	Team Leader/	IPCO-029
	Environmental Management Specialist	
Kevin Paolo G. Bartolome	Environmental Management Specialist (Air)	IPCO-353
Engr. Patricia Ann Go	Environmental Management Specialist	IPCO- 352
	(Water)	
Jerome B. Leaño	Sociology/	IPCO-059
	Social Development Specialist (People)	
	Environmental Management Specialist (Land)	
Teodora Haresco-Salvador*	Land Use and Social Modules	IPCO 111
Jose Dennis Regalado*	Terrestrial Flora, Entomology and Benthic Survey	Deceased
Alan Salvador*	Water Quality, Hydrogeology and Hydrology	IPCO-281
Note: * Envitech Environmental Man	agement Consultancy Services, Inc. (Previous consultants of	f NCC)

Envitech Environmental Management Consultancy Services, Inc. (Previous consultants of NCC)

EPRMP Study Schedule & Area

EPRMP Study Schedule

The timetable for the EPRMP study is shown in the following table:

PROCESS	EIA STUDY MILESTONES	DATE
PUBLIC	Barangay Labayug	September 22, 2015
CONSULTATIONS/		June 14, 2017
IEC ACTIVITY	Barangay Calunetan	September 7, 2015
		June 16, 2017
	Barangay Inmalog	September 7,2015
		June 17, 2017
	Barangay Paldit	September 8, 2015
		June 15, 2017
	Barangay Sugcong	September 2, 2015
		June 15, 2017
	Sitio Inmalog	October 1, 2105
		June 16, 2017

EPRMP Study Area

- 9 The proposed project site is situated in Brgy. Labayug in the Municipality of Sison, Pangasinan, Region I (Ilocos Region). Initially, the project impact area generally consisted of the project footprints as the direct impact area (DIA) and the areas in the immediate vicinity of the project site in the host barangay LGU Labayug as the indirect impact area (IIA). In accordance with the guidelines provided in DAO 2017-15, after the completion of the EIA study, the delineation of the direct and indirect impact areas was updated as follows:
 - For the Land component, the direct impact area (DIA) pertains to the areas that will be cleared • and developed for the construction and operation of the proposed project components, which are identified in Section 1.4.
 - For the Water component, the DIA refers to the additional deep wells that will be developed • within the project site that will be tapped to supply the additional water requirements of the project. Nearby creek and groundwater sources are currently being used by the proponent in its operation.
 - For the Air component, the DIA covers the areas within the host barangay of Labayug where the ground-level concentrations (GLC) of total suspended particles (TSP), the criteria pollutant

of potential concern, were projected to exceed 40 μ g/Ncm based on 1-hr averaging time. According to the dispersion modelling, the maximum GLC does not exceed the standards stated in DAO 2000-81.

• For the People component, the IIA encompasses the communities in the host Municipality of Sison particularly Brgy. Labayug (host barangay), Brgy. Calunetan, Brgy. Inmalog, Brgy. Paldit and the Municipality of Pozurrubio in Brgy. Sugcong, which are expected to benefit from the employment, business opportunities, taxes, and other potential socio-economic contributions of the project.

EPRMP Methodologies

¹⁰ The methods employed in each of the four modules of the EPRMP study are summarized as follows:

EIA MODULE	METHODS	PURPOSE
LAND	 Review of land use plan in the host municipality of Sison, Pangasinan Soil sampling and quality analysis Review of relevant geologic maps covering the study area Assessment of terrestrial ecology in the study area Review of existing and proposed quarry plans 	 To assess land use/zoning compatibility of the proposed project To establish baseline information on soil quality in the proposed project site To assess possible impacts of geologic hazards on the proposed development To establish baseline information on terrestrial flora and fauna in the proposed project site
AIR	 Climatological data from the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) Review of NCC's self-monitoring reports on ambient air quality, noise level and stack emissions Air dispersion modeling 	 To assess possible impacts of meteorology on the proposed development To review compliance of NCC to DENR standards To assess possible impacts of proposed project activities on air quality in the impact area
WATER	 Groundwater and surface water sampling and quality analysis to establish the baseline Review of available water quality monitoring data covering the study area Assessment of freshwater ecology in the study area Review of NCC's self-monitoring report on the quality of effluent discharges Review of actual water production and consumption data 	 To determine existing groundwater and surface water quality in the area To review compliance of NCC to DENR standards To assess possible impacts of the project to groundwater and freshwater quality and ecosystem.
PEOPLE	 Socio-economic and perception survey in the project impact areas Review of socio-economic profile of the communities in the impact area (Barangay Labayug), Stakeholder consultations (focused group discussion, key informant interview with various stakeholders Review of activities completed for the SDP and SDMP by the company for the past 3 years. 	 To assess impacts of the project on the project-affected persons To hear the opinions of stakeholders on the project. To ensure that the company provides social development programs suitable for the project-affected community.

EXECUTIVE SUMMARY

Scoping and Public Participation

Information and Education Campaign

¹¹ Information and education campaign (IEC) and focused group discussions (FGDs) were done at the affected barangays last September 2015 and June 2017 by the Envitech Environmental Management Consultancy Services, Inc., the former EPRMP consultant of NCC.

Socio-Economic and Perception Survey

- ¹² As part of the baseline characterization and impact assessment on People, a socio-economic and perception survey was conducted last June 25, 2019. The survey covered the residents of Barangays Labayug, Paldit, inmalog, Calunetan and Sugcong with a total of 295 respondents.
- ¹³ Each respondent was asked to fill out a two-page survey form, which was written Tagalog. The perception survey form had two parts. The first part contained 11 questions on the respondent's profile, while the second part had six questions that aimed to gauge the awareness and gather the opinion of the respondent regarding the proposed project.

EPRMP Summary

Summary of Alternatives Site Selection

- ¹⁴ No alternative sites were suggested for the expansion of the cement plant since only upgrading of the existing facilities and installation of additional equipment will be done to increase its clinker production capacity. There is no need for land clearing if the facility is built within the existing cement plant, which should lessen impacts on land, water, and air. Also, people in the area are already quite receptive regarding the existence of the cement plant in the area.
- ¹⁵ No alternative sites for the quarry expansion were considered since the proposed area for the expansion is located within the MPSA of NCC. Transportation of the minerals will also be easier since the cement plants are also located inside the MPSA.

Technology Selection

¹⁶ There are two types of cement production processes: the wet process and the dry process. **NCC** will still be using dry process since this is already being utilized by the existing cement lines. The proposed expansion of the cement plant will only involve upgrading of the existing equipment to accommodate the additional production capacity. Dry process also requires minimal water. The savings in fuel cost by using the dry process as opposed to the wet process is the compelling reason why modern cement plants use the dry process.

Resources and Alternative Fuels

- ¹⁷ The proponent is committed to improve the cement production in its project by seeking energy efficient processes and sustainable alternative energy sources. They are considering the use of alternative fuels, which is well proven and well established in most cement industries in Europe and Asia.
- ¹⁸ Possible alternative fuels that can be used for the proposed cement plant include industrial wastes such as: used tires, waste oils, pet coke, rice husks and refuse derived fuel.

No Project Options

- ¹⁹ If the proposed expansion of the cement plant and the quarry will not be pursued, the cement market will be affected. Cement prices may be higher if the supply does not meet the current demand. The market may also resort to buying of imported cement instead of the local cement if the supply is low. Furthermore, the following impacts will be **avoided** if the proposed expansion will not happen.
 - Land: The quarry expansion will cause loss of flora and fauna in the additional quarry areas. More residual wastes will be generated with the proposed expansion.
 - Air: With the increased clinker and quarry production, there will be for dust and GHG emissions.
 - Water: There will be an increase in the water consumption with the expansion. Additional deep wells be constructed as water source. There will also be increase on the generation of wastewater.
 - People: The expansion will provide more job opportunities to the local community. Approximately 2,449 workers are required for the operation of the cement plant and quarry. There will also be an increase on the local taxes and revenues. It is estimated that the project will entail payment of annual business tax of ~Php 14 to 15 Million and real property tax of ~19 to 22 Million. Additional budget will also be allocated for the SDP and SDMP programs of NCC.

Key Findings of the Environmental Baseline Studies

²⁰ The findings of the environmental baseline studies conducted for each of the four EIA modules are summarized in the following table.

MODULE	SUMMARY OF FINDINGS	
LAND		
Land Use and Classification	 The area where the proposed project is situated is designated as industrial zone. The proposed project site does not fall within any declared ECA and is not covered by any tenurial instrument. 	
Geology/Geomorphology	 There are three fault lines near the location of the NCC Line 1 and Line 2 cement plant. The project site has medium to high susceptibility in terms of earthquake-induced landslide. The project site is not susceptible to liquefaction. The project site has high to moderate susceptibility to landslide. The project site is not a flood-prone area. There are no active volcanoes near the project site. The project site is not prone to tsunami. 	
Terrestrial Ecology	 From the terrestrial flora survey, 2 species are considered as endangered, one species is vulnerable, and 3 species are critically endangered according to the IUCN Red List of Threatened Species. On the other hand, based from the DAO 2017-11, there are one species that is endangered, one species is critically endangered and five are vulnerable. There are no critically endangered fauna species found in the project site based from the IUCN list. However, only the <i>Python reticulatus</i> (Reticulated phyton) was listed in the DAO 2004-15 as other threatened species (OTS). 	
WATER		
Hydrology/Hydrogeology	 The project site is located within the catchment area of Aloragat River. There are four creeks near the project site; Buli Creek, Bettac Creek, Sapid Creek and Cabuar Creek. 	

EXECUTIVE SUMMARY

ENI	
MODULE	SUMMARY OF FINDINGS
Competition in Water Use	 The expansion of the cement plant will increase the required water into 1,250 m³/day. The quarry operation will also require 80 m³/day of water. NCC is reusing its water from the siltation ponds
Water Quality	 SW1 and SW3 exceeded the standard for fecal coliform. All the stations have high total coliform content. All the groundwater samples collected exceeded the standard for fecal coliform.
Freshwater Ecology	 Station 1 and Station 2 have the highest number of macroinvertebrate individuals observed with 63 and 50 individuals, respectively. These transects in Sapid creek are located near the spring pond where riparian vegetation thrives like bamboo, figs and other shade trees favorable for macroinvertebrates growth and survival. Family Culicidae, Family Ampulariidae and Family Gyrinidae are the most abundant species.
AIR	
Meteorology	 The project area mainly belongs to Type I climate under the modified Coronas classification (two pronounced seasons, dry from December to May and wet from June to November). Temperature is highest in April and lowest in January. The rainiest month is August with mean monthly rainfall values of 581.3mm. The driest month in the area is January with only 6.7 mm of rainfall. An average of 5 cyclones pass through the area every three years.
Ambient Air Quality and Noise	 All sampling stations showed acceptable ambient air and noise conditions, with the values below the specified NAAQS and NPCC limits, respectively.
PEOPLE	
	 Water supply sources in Sison and Pozorrubio include piped connection, deep wells, shallow wells and spring sources. Sison is served by 2 power supply service providers namely: Benguet Electric Cooperative (BENECO) and La Union Electric Cooperative (LUELCO). The municipality of Pozorrubio is served by a power supply service provider namely: Pangasinan III Electric Cooperative, Inc. (PANELCO III). The consistent leading cause of morbidity in Sison (2014-2018) was Hypertension and Upper Respiratory Tract Infection. Based on the perception survey, (~60%) of all the respondents have prior knowledge about the proposed project. (36.2%) of the respondents believed that the proposed project would be beneficial for their respective communities. The most cited potential positive impact of the project for the impact Barangays is employment generation (76%), followed by increased local tax revenue collection (28%). Conversely, the most cited potential negative impact of the project is air pollution (84%), followed by water (45%) and land (33%) pollution.

Integrated Summary of Impacts and Residual Effects After Mitigation

²¹ The main project impacts of the proposed Project for each environmental component are summarized in the following table.

EXECUTIVE SUMMARY

POTENTIAL IMPACTS	PROJECT PHASES	FINDINGS/OBSERVATIONS	MITIGATING/ENHANCEMENT MEASURES
LAND			
Devaluation of land value as a result of improper solid waste management and other related impacts	Construction, Operation, Abandonment	Increase in generation of wastes (hazardous, residual, scraps)	NCC implements its waste management procedures which include solid waste management plan, hazardous waste management plan and scraps management
Vegetation removal and loss of habitat due to quarry expansion	Quarry Operation	Loss of flora and fauna in the areas to be developed as quarry sites	 NCC is implementing its approved Environmental Protection and Enhancement Program NCC is also conducting reforestation activities and greening projects in the project site
Modification of existing terrain	Quarry Operation	Existing terrain will be modified due to earth movement and excavation during quarry operation	 Reforestation of mined-out areas Mine rehabilitation plan
WATER			
Degradation of ground water / surface water quality	Construction, Operation	Accidental oil spills from heavy equipment Accidental oil spill from delivery trucks	NCC has its oil spill contingency plan
	Construction, Operation	Ground and surface water contamination from improper disposal of wastes, percolated wastewater, sludge and fecal matter	 Sanitation facilities for workers (e.g. toilets, showers, etc.) are provided on-site Septic tanks are also installed and are regularly desludged Provision of Sewage Treatment Plant
Degradation of surface water quality	Construction, Operation	Possible siltation and surface runoff Increase in turbidity of surface water	Siltation ponds are constructed in the quarry areas and cement plant and are regularly desilted
AIR			1
Impact on Air Quality	Construction	NO _x , SO ₂ , and CO emissions from heavy equipment that will be used during construction.	Preventive maintenance is regularly conducted to all vehicles and equipment.
	Operation	TSP and PM ₁₀ emissions from the cement manufacturing facility and quarry sites is of primary concern.	 Installation of bag filters that will control at least 99% of the emissions from the cement manufacturing plant of NCC and SMNCI Road watering within the plant site to control dust
		Gaseous emissions are expected from the kiln and the coal mill.	Proper maintenance of equipment to ensure efficiency
		Heavy metal emissions are expected from the kiln due to use of alternative fuels	 Bag filters can also control up to 92% of heavy metal emissions
Increase in Ambient Noise Level	Construction/ Operation	Noise will be generated by heavy equipment during construction and quarry operation.	 Preventive maintenance is regularly conducted to all vehicles and equipment.

EXECUTIVE SUMMARY

POTENTIAL IMPACTS	PROJECT PHASES	FINDINGS/OBSERVATIONS	MITIGATING/ENHANCEMENT MEASURES
PEOPLE		The cement plant will generate noise.	 Heavy equipment are muffled. Workers use appropriate PPE. Noisy activities are performed only during daytime. Sound barriers and sound proofing are installed
Occupational Health	Construction,	Exposure of workers to	NCC is implementing its
and Safety	Operation	occupational health and safety	Safety and Health Policy
		hazards	NCC has Emergency and
			Preparedness Response Program
Generation of Local Benefits from the Project	Operation	Higher allocation of fund for social development programs	 NCC is implementing its social development programs that are responsive to local needs in the impact area NCC conducts yearly IEC activities with various barangay representatives to formulate SDMP activities.
Traffic Congestion	Construction Operation	Increase in traffic generation in the area due to delivery trucks coming in and out of the Plant	 Coordination with LGU on scheduling and handling the flow of traffic near the project area Traffic Management Plan

Risks and Uncertainties

²² The risks and uncertainties identified relating to the EIA findings of for each environmental component are summarized in the following table.

MODULE	RISKS AND UNCERTAINTIES	IMPLICATION ON DECISION MAKING
Air/People	Failure of existing air pollution control devices	Consider redundancy for emergency air pollution control
Land/People	Landslide associated to quarry operations	 Development and strict implementation of the quarry development plan approved by MGB Coordination with MGB and local authorities for proper management control.

SECTION 1

PROJECT DESCRIPTION

- Northern Cement Corporation (NCC) is currently operating a cement plant facility in Barangay Labayug, Sison, Pangasinan. The cement plant facility is composed of two lines (Line 1 and Line 2) with a total clinker production capacity of 4,000 metric tons per day (1.20 Million Metric Tons per Year) or about 6,667 metric tons per day of cement. The operation of the cement plant of the NCC is granted with an Environmental Compliance Certificate Ref. No. 9207-032-301C last January 15, 1993.
- ² NCC also has quarry operation with a different ECC (Environmental Compliance Certificate Ref. No. 9909-106-105) secured last February 24, 2000. The quarry of NCC is under Mineral Production Sharing Agreement (MPSA) No. 106-98-1 with aggregate area of 630 hectares. Under the mentioned ECC, the NCC can use about 163 hectares of the MPSA as quarry area with daily production capacity of 8,500 MT and 2,100 MT of limestone and shale, respectively. The NCC Line 1 and Line 2 cement plant is located within the MPSA area and the quarry supplies its limestone and shale requirement.
- ³ The ECC Ref. No. 9909-106-105 also covers the proposed Line 3 of the cement plant of the NCC however, it was never constructed due to economic downturns. NCC entered an agreement with San Miguel Northern Cement, Inc. (SMNCI) that SMNCI will be the new owner for the said ECC but will cover the cement plant operation only. SMNCI will amend ECC Ref. No. 9909-106-105 to (1) transfer the ownership of the mentioned ECC to SMNCI, (2) exclude the quarry operations as project component and (3) to expand the clinker production capacity (Line A and Line B in place of Line 3). A separate ECC amendment application is being done for this.
- ⁴ On the other hand, NCC intends to amend the ECC Ref. No. 9207-032-301C to (1) include the quarry operation that was under ECC Ref. No. 9909-106-105, (2) to increase the limestone and shale production capacity of the quarry and (3) to increase the clinker production capacity of Line 1 and Line 2.
- ⁵ To supply the increasing demand of cement in the country, NCC intends to increase its clinker production capacity from 4,000 TPD to 5,500 TPD. For the expansion of the capacity of the cement plant, no additional cement plant line will be constructed, and no additional area will be required. The expansion will only include upgrading and installation of additional equipment.
- ⁶ The quarry production of NCC is also to be increased to 8.27 MMTPY of limestone and 1.83 MMTPY of shale. The increase in quarry production is for the supply of the additional raw material requirements of the expansion of the NCC Line 1&2, to supply the raw materials of the proposed San Miguel Northern Cement, Inc. (SMNCI) Line A and Line B cement plant facility and the limestone requirement of the SMC Global Power.
- ⁷ The same MPSA will be utilized for the expansion of the limestone and shale. However, the proponent also intends to use its adjacent property outside the MPSA to supply the additional shale requirement. A quarry permit and a separate ECC will be applied for this. The proponent is currently conducting a study on the said properties.
- ⁸ **Table** 1-1 shows the details of the project, the Proponent, and the EIA Preparer.

Table 1-1: Basic Information on the Proposed Project, Proponent, and EIA Preparer

Name of Project	NCC Cement Plant and Quarry Expansion Project		
Project Location	Province of Pangasinan, Municipality of Sison, Barangay Labayug		
Project Category & Type (based on Annex A of MC 2014- 005 Guidelines)	Cement Plant with Quarrying		
Project Size	Cement Plant Cl	linker Production	
	Existing Line 1 & 2 Production	Proposed New Line1&2 Production	
	Capacity	Capacity	
	4,000 TPD (1.28 MMTPY) Clinker	5,500 TPD (1.76 MMTPY) Clinker	
	Qu	arry	
	Existing Extraction Rate	Proposed New Extraction Rate	
	2.72 MMTPY Limestone	8.27 MMTPY Limestone	
	0.672 MMTPY Shale	1.83 MMTPY Shale	
Proponent Name	Northern Cement Corporation		
Proponent Authorized	Ms. Rodelia A. Sarrosa		
Representative	AVP and Support Group Manager		
Proponent Address and	155 EDSA,		
Contact Details	Brgy. Wack-Wack,		
	Mandaluyong City, Metro Manila, Phili	ppines	
EIA Preparer (Consultant)	LCI Envi Corporation		
Preparer Contact Person	Engr. Jose Marie U. Lim, MSc.		
	EIA Team Leader		
Preparer Address and	Unit 8L-M Future Point Plaza 3		
Contact Details	111 Panay Avenue, South Triangle		
	Quezon City, Metro Manila, Philippines	5	
	Tel. No.: (632) 442-2830		
	Fax No.: (632) 961-9226		

1.1 Project Location and Area

1.1.1 Project Location

⁹ The proposed expansion of the cement plant facility will be within the existing 43.06-hectare NCC plant complex in Brgy.Labayug, Sison, Pangasian. The general location map of the NCC Line 1 & Line 2 is shown in **Figure** 1-1. The geographic coordinates defining the boundary of the proposed project site are provided in the table below.

Table 1-2: Coordinates of the NCC Cement Plant Complex

Point	Latitude	Longitude
1	16° 9'47.73"	120°33'57.32"
2	16° 9'47.89"	120°34'3.29"
3	16° 9'48.51"	120°34'3.23"
4	16° 9'48.37"	120°34'7.74"
5	16° 9'46.47"	120°34'9.35"
6	16° 9'43.66"	120°34'8.99"
7	16° 9'44.38"	120°34'11.39"
8	16° 9'48.05"	120°34'11.87"
9	16° 9'48.33"	120°34'15.90"
10	16° 9'50.47"	120°34'15.82"
11	16° 9'52.04"	120°34'13.82"
12	16°10'3.67"	120°34'9.94"
13	16°10'6.16"	120°34'6.31"
14	16°10'10.87"	120°34'3.76"
15	16°10'10.09"	120°33'54.22"
16	16°10'0.72"	120°33'47.85"
17	16° 9'52.48"	120°33'58.08"
18	16° 9'50.36"	120°33'57.21"

¹⁰ The quarry operation of NCC is also located in Brgy. Labayug, Sison, Pangasinan. The location of the MPSA and the limestone and shale quarry areas are also shown in **Figure 1-1** while the geographic coordinates are shown in **Table 1-3**.

Table 1-3: Coordinates of the Exiting Quarry Area

MPSA No. 106-98-1		
POINT	LATITUDE	LONGITUDE
1	16° 10' 14.23"	120° 33' 24.43"
2	16° 10' 28.984"	120° 33' 39.631"
3	16° 10' 51.94"	120° 33' 15.776"
4	16° 11' 06.693"	120° 33' 30.978"
5	16° 10' 43.739"	120° 33' 54.833"
6	16° 11' 13.228"	120° 34' 25.24"
7	16° 10' 27.331"	120° 35' 12.946"
8	16° 10' 12.578"	120° 34' 57.743"
9	16° 10' 02.806"	120° 35' 07.895"
10	16° 09' 33.298"	120° 34' 37.49"
11	16° 09' 43.07"	120° 34' 27.338"
12	16° 09' 28.317"	120° 34' 12.136"
	Limestone Quarry (Existing)	
1	16°10′6.03"	120°34'8.25"
2	16°10′28.98″	120°33′39.63″
3	16°10'43.73"	120°33'64.83"
4	16°10'20.78"	120°34′18.60″
	Limestone Quarry (Expansion)	
1	16 [°] 10'13"	120°33′20.54″
2	16 [°] 11′0.88″	120°33′37.54″
3	16 [°] 10′37.93″	120°33'59.60"
4	16 [°] 11'7.42″	120°34'30"
5	16 [°] 10'21.52"	120°35′17.71″
6	16 [°] 10'6.77"	120°35'2.51"

MPSA No. 106-98-1		
POINT	LATITUDE	LONGITUDE
7	16 [°] 9′57″	120°35′12.66″
8	16 [°] 9′27.49″	120°34′42.25″
9	16 [°] 9′37.26″	120°34′32.10″
10	16 [°] 10′14.25″	120°34'1.09"
Shale Quarry (Existing)		
1	16°9′51.27″	120°33′48.20″
2	16°10'8.42"	120°33′29.19″
3	16°10′23.17″	120°33'44.39"
4	16°10′0.22″	120°34′8.25"

1.1.2 Project Area

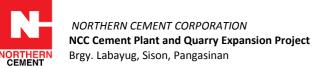
- ¹¹ The proposed expansion of the NCC cement plant will still occupy a total land area of 43.06 hectares. No additional land area will be used for the expansion since only upgrading and installation of additional equipment will be done to increase the clinker production capacity of the NCC Line 1&2. No additional production line will be constructed for the expansion.
- ¹² The expansion for the limestone production will be utilizing the same MPSA No. 106-98-1 and will cover 483 hectares of mining area. For the shale, the same quarry area will be used.
- ¹³ The nearest industrial plants near the proposed facility are listed in the table below:

Tuble 1 4. Troximity of other Hunts with the Hoger Area		
DIRECTIONAL REFERENCE (FROM THE PROJECT AREA)	TYPE OF PLANT	BRIEF DESCRIPTION
East (Brgy. Tiblong, San Fabian, Pangasinan)	LPG Terminal	 Pryce Gases Inc. operates a 7.5-hectare liquified petroleum gas (LPG) terminal with a storage capacity of 8,400 MT in Brgy. Tiblong, San Fabian. It is approximately 15 kilometers away from the project site.
Southwest (Brgy. San Roque, San Manuel, Pangasinan)	Hydroelectric Power Plant	 San Roque Power Corporation operates a hydroelectric power plant with a capacity of 435 MW in the Municipality of San Manuel, Pangasinan. It is approximately 13 kilometers away from the project site.

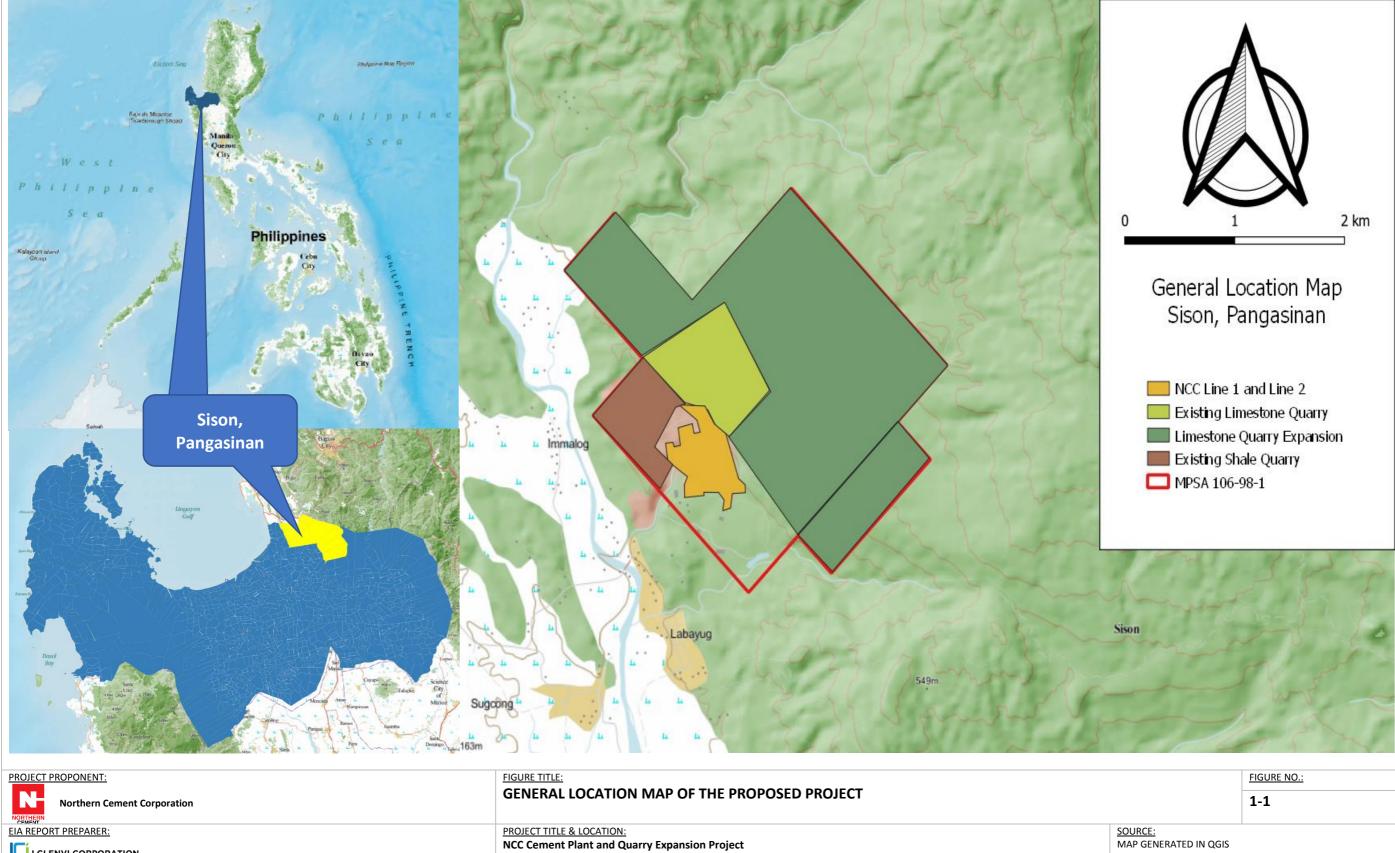
Table 1-4: Proximity of Other Plants with the Project Area

1.1.3 Project Impact Areas

- ¹⁴ The study area for the EIA includes the direct and indirect impact areas. The project impact area generally consists of the ~568-hectare project footprints of the cement plant complex and quarry areas the direct impact area (DIA) and the areas in the immediate vicinity of the project site in the host barangay LGU Labayug as the indirect impact area (IIA). In accordance with the guidelines provided in DAO 2017-15, the delineation of the direct and indirect impact areas will be updated as follows:
 - For the Land component, the direct impact area (DIA) pertains to the areas that will be cleared and developed for the construction and operation of the proposed project components, which are identified in **Section 1.4**.
 - For the Water component, the DIA refers to the additional deep wells that will be developed within the project site that will be tapped to supply the additional water requirements of the project. Nearby creek and groundwater sources are currently being used by the proponent in its operation.
 - For the Air component, the DIA covers the areas within the host barangay of Labayug where the ground-level concentrations (GLC) of total suspended particles (TSP), the criteria pollutant of potential concern, were projected to exceed 40 μg/Ncm based on 1-hr averaging time.



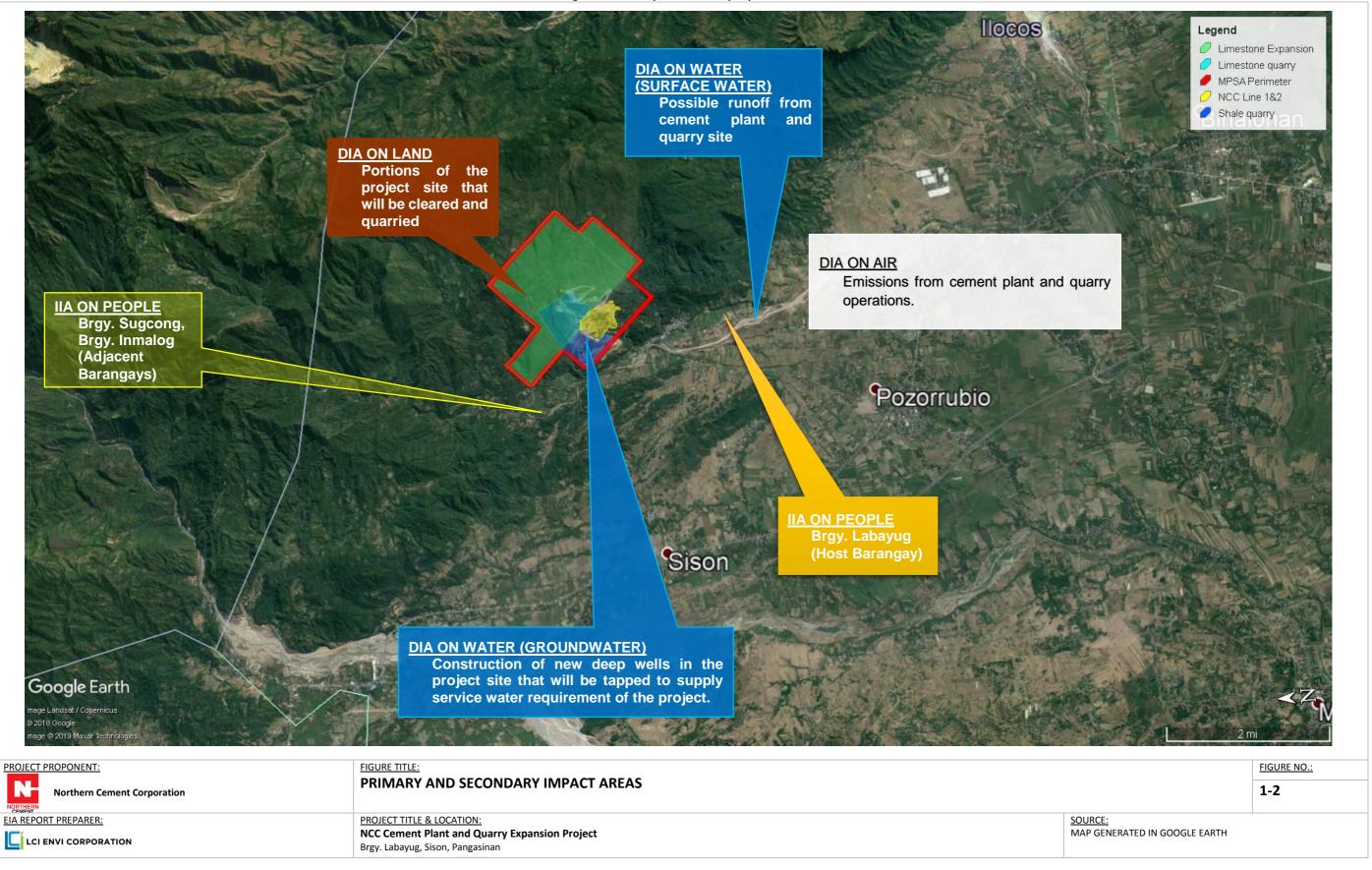
According to the dispersion modelling, the maximum GLC does not exceed the standards stated in DAO 2000-81.


- For the People component, the IIA encompasses the communities in the host Municipality of Sison particularly Brgy. Labayug (host barangay), Brgy. Calunetan, Brgy. Inmalog, Brgy. Paldit and the Municipality of Pozurrubio in Brgy. Sugcong, which are expected to benefit from the employment, business opportunities, taxes, and other potential socio-economic contributions of the project.
- ¹⁵ The impact area delineation for the proposed project is graphically presented in **Figure 1-2**.

1.1.4 Accessibility of the Project Site

¹⁶ The proposed project site is approximately 212 kilometers away (3 hours and 10 minutes) from Kilometer Zero in Manila. It is accessible by any type of land vehicle. The fastest route will traverse the North Luzon Expressway (NLEX) and Tarlac-Pangasinan-La Union Expressway.

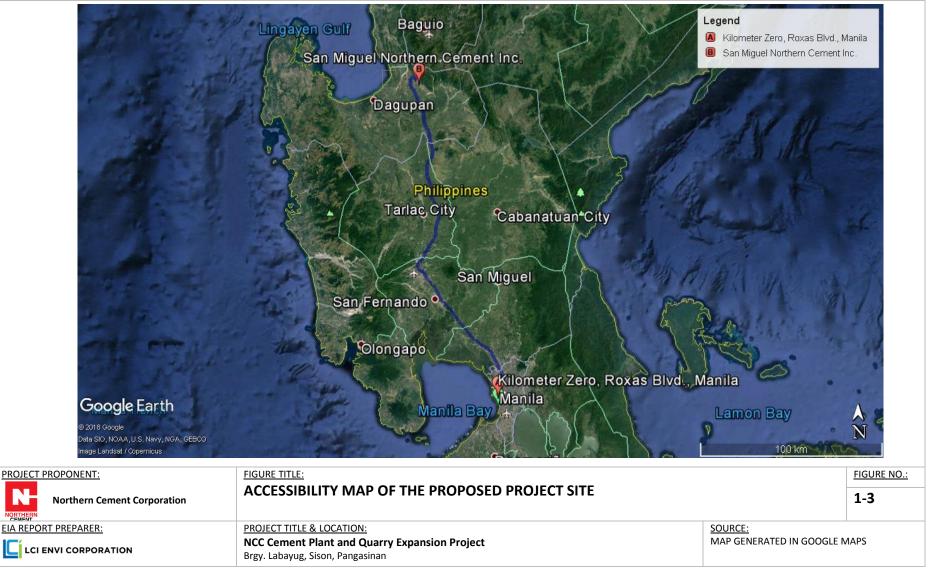
Brgy.Labayug, Sison, Pangasinan


LCI ENVI CORPORATION

Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

SOURCE: MAP GENERATED IN QGIS BASE MAP: NAMRIA

Figure 1-2: Primary and Secondary Impact Areas



Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

Figure 1-3: Accessibility Map of the Proposed Project Site

1.2 Project Rationale

- ¹⁷ Expansion of the cement plant is in line with the goal of the national government to build infrastructure, as cement is a major construction material. Public and private developments hinge on the steady supply of cement. Furthermore, higher supply of cement leads to lower prices. Cement is almost universal in terms of building applications—ranging from government projects such as low-cost socialized housing, public elementary schools and hospitals, highways and bridges, and to privately-funded endeavors such as condominiums, commercial centers, and individual housing units.
- ¹⁸ It is important to maintain the supply of cement to maintain its prices. If supply of cement curtails, higher prices of cement may impede the progress of infrastructure projects, which may then lead to cutting of basic social services. A solution to low supply of cement is importation, but this solution undermines the local economy. Establishing cement manufacturing facilities in the country us important to provide a reliable supply of cement, lessen the dependence on imported cement products, and to assure competitive prices that supports local economy.
- ¹⁹ The Philippine Board of Investments (BOI) is looking for investors as it expects demand to bubble to 40 million tons/year by 2020¹. This increase in demand is aided by the current administration's plan to focus its spending on infrastructure building. According to the Cement Manufacturers' Association of the Philippines, the cement facilities in the country have an installed and operating capacity of 34.5 million tons annually². Based on the reports, a demand of about 5.5 million metric tons must be filled. Additionally, other sources warn that the current shortage of cement may delay construction of new buildings, which in turn will hold back creation of more spaces that can be used for business enterprises³.
- ²⁰ Expansion of the cement plant also has effects on the local economy Sison, Pangasinan. The project can contribute to the development of the area by providing local employment, tax contributions, and increased commercial trading.

1.3 Project Alternatives

²¹ Alternatives analysis is carried out to determine the most favorable alternative considering such factors as economic viability, technical feasibility, magnitude and extent of impacts on environment and people. The project is analyzed as the preferred alternatives while assessing "without the project" alternatives or "do nothing alternatives. Technology employed by the project was also assessed against similar technologies employed in the sector. **Table** 1-5 compares the environmental impacts of constructing and operating a full cement plant as opposed to the no-project scenario.

¹ Manila Bulletin. BOI seeks more cement investments as infra projects lifting demand. 2 June 2017.

² Inquirer.net. Cement supply enough for Build, Build, Build. 17 January 2019

³ Philippine News Agency. Cement shortage seen to delay new construction projects. 10 April 2019

Table 1-5: Comparison of Anticipated Environmental Impacts of Project Alternatives

ALTERNATIVES	ANTICIPATED ENVIRONMENTAL IMPACTS
Full Cement Plant	 Land: Solid waste generation may be higher due to use of more resources and employment of more personnel. Water: Construction and operation of larger facilities may have higher water supply requirement that may, in turn, result to higher wastewater generation. Air: Possible increase in dust emissions from the cement processing may also
	 adversely affect ambient air quality in the project area if not properly mitigated. People: Local benefits from the large-scale project (i.e., increased employment, social and economic activities, tax revenues, and basic social services) may be greater. However, dust generated from the cement plant may cause adverse health effects to the community and workers if not properly mitigated.
No-Project Scenario	 Land: Quarrying activities to supply raw materials for NCC will continue. Adverse impacts due to quarrying will still be experienced. Air: The ambient air quality in the area, as well as the source emissions from the facilities of NCC Line 1 and 2 are within DENR standards. Water: The current operation will continue to consume water for industrial and domestic uses. People: The no-project scenario entails loss of local employment and service opportunities. If the project is not pursued, the supply of cement will be affected, especially with the Duterte Administration's push for infrastructure development under the "AmBisyon Natin 2040" and the "Build, Build, Build" program.

1.3.1 Site Selection

- No alternative sites were suggested for the expansion of the cement plant since only upgrading of the existing facilities and installation of additional equipment will be done to increase its clinker production capacity. There is no need for land clearing if the facility is built within the existing cement plant, which should lessen impacts on land, water, and air. Also, people in the area are already quite receptive regarding the existence of the cement plant in the area.
- For the quarry area, no alternative sites are being considered since the existing quarry areas of NCC contain enough limestone and shale to supply the mineral requirements. Quarry expansion within the existing areas will pose less environmental impacts compared to adding another quarry site. New quarry sites may also result to new associated environmental and social impacts such as significant vegetation removal through site clearing and possible displacement of people in the new mine areas.

1.3.2 Technology Selection

²⁴ There are two types of cement production processes: the wet process and the dry process. NCC will still be using dry process since this is already being utilized by the existing cement lines. The proposed expansion of the cement plant will only involve upgrading of the existing equipment to accommodate the additional production capacity. Dry process also requires minimal water. The savings in fuel cost by using the dry process as opposed to the wet process is the compelling reason why modern cement plants use the dry process.

1.3.3 Resources and Alternative Fuels

²⁵ The proponent is committed to improve the cement production in its project by seeking energy efficient processes and sustainable alternative energy sources. They are considering the use of alternative fuels, which is well proven and well established in most cement industries in Europe and Asia.

Possible alternative fuels that can be used for the proposed cement plant include industrial wastes such as: used tires, waste oils, pet coke, rice husks and refuse derived fuel. The use of waste as alternative fuel in cement production has numerous environmental benefits such as:

- The use of waste will reduce the use of non-renewable fossil fuels, such as coal, and reduce the environmental impacts associated with coal mining. The use of waste as alternative fuel will contribute towards lowering of greenhouse gases emissions by reducing waste materials to be incinerated in municipal waste incinerators.
- The use of waste as alternative fuel is technically sound, since the process basically destroys the organic components and retains the inorganics, such as insoluble residues, ashes and silicates, and integrates these to the product. Cement kilns have a number of characteristics which make them ideal installations for alternative fuels to be vaporized and burnt safely. The following characteristics are high operating temperature, long residence time, presence of oxidizing atmosphere and alkaline environment, high thermal inertia, retention of ash in clinker and the continuous supply of fuel.
- Concrete made from cement manufactured using alternative fuels will have the same properties as concrete made from cement manufactured using fossil fuel as the heavy metal concentrations in concrete are not significantly changed by the use of alternative fuels. It is expected that quantities of leached metals will be immeasurable and significantly below levels allowed for drinking water.

1.3.4 No Project Option

- ²⁷ If the proposed expansion of the cement plant and the quarry will not be pursued, the cement market will be affected. Cement prices may be higher if the supply does not meet the current demand. The market may also resort to buying of imported cement instead of the local cement if the supply is low. Furthermore, the following impacts will be avoided if the proposed expansion will not happen.
 - Land: The quarry expansion will cause loss of flora and fauna in the additional quarry areas. More residual wastes will be generated with the proposed expansion.
 - Air: With the increased clinker and quarry production, there will be for dust and GHG emissions.
 - Water: There will be an increase in the water consumption with the expansion. Additional deep wells be constructed as water source. There will also be increase on the generation of wastewater.
 - People: People: The expansion will provide more job opportunities to the local community. Approximately 2,449 workers are required for the operation of the cement plant and quarry. There will also be an increase on the local taxes and revenues. It is estimated that the project will entail payment of annual business tax of ~Php 14 to 15 Million and real property tax of ~19 to 22 Million. Additional budget will also be allocated for the SDP and SDMP programs of NCC.

1.4 Project Components

1.4.1 Major Components

²⁸ The list of the existing major components of the NCC cement and quarry operations and the proposed additional equipment for the increase in the capacity of both the cement plant and quarry is shown in **Table** 1-6. The plant layout of NCC Line 1 and Line 2 is shown in **Figure** 1-4.

Table 1-6: List of Existing and Additional Project Components for NCC Cement Plant and Quarry

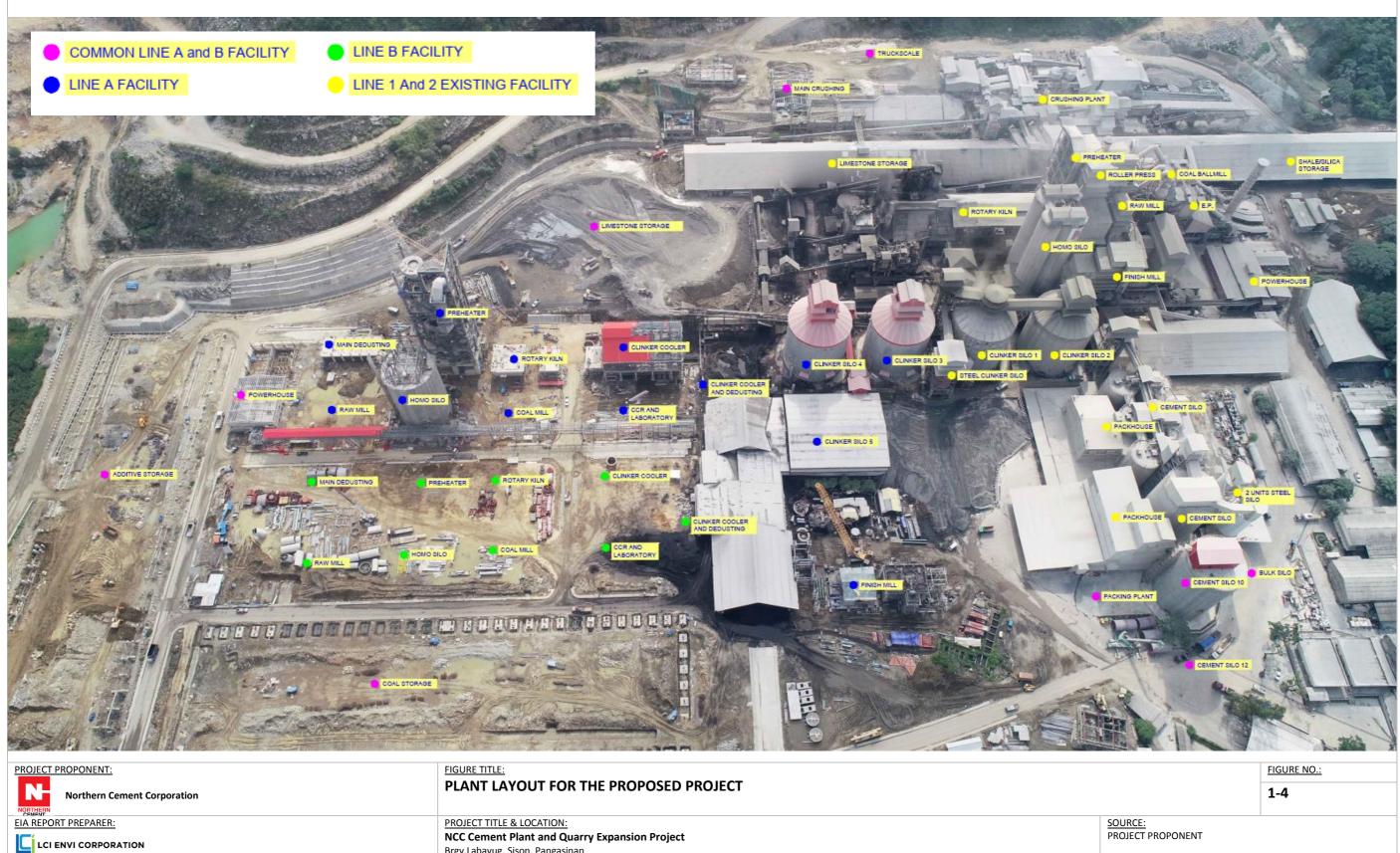
Component	Existing	Proposed Additional
	Quarry	
Limestone crushing system	2 units x 250 TPH Jaw and	No additional
	Impact Crusher	
Storage Bins	42,000 tons	No additional
	Cement Plant	
Coal mill/grinding system	 35 TPH coal grinder 2 units 25 TPH vertical mill 17.8 TPH coal mill 40 TPH hammer mill flash dryer 50 TPH coal flash dryer 40 TPH ball mill 	No additional
Coal storage	9-bays coal storage	No additional
Raw material Pre-blending	75 TPH Roller Crusher 300 TPH Swing Hammer Crusher	No additional
Raw Mill	2 units 165 TPH hammer mills 2,400 TPH Raw Ball Mill	
Homogenizing silo	4 units 1,300 TPH	Upgrading and rehabilitation of old internal parts and blowers
Pre-heater	2 units 4 stage pre-heater	Upgrading and modification of 2 units preheater with feed points for AFR
Gas Conditioning Tower	Old GCT Single fluid Spraying System	Upgrading of water spraying system of GCT using highly efficient Autojet Gas Cooling System
Kiln feeding system	2 units 100 TPH	No additional
Kiln system	2 units 2,200 TPD	Replacement of old burner pipe to low-NOx German FLSmidth burner pipe
Clinker cooler	2 units	No additional
Clinker silo	2 units 25,000 MT	Additional25,000MTconcrete clinker siloAdditional steel clinker silo
Cement grinding	190 TPH finish ball mill 130 TPD finish ball mill	No additional
Cement silo	39,000 MT	No additional
Packaging house	3 units 1,600 TPD rotary packing machines 4 units 90 TPH rotary packing machine	No additional
Bulk loading facility	1 unit 40 TPH 2 units 2,500 MT steel silo	
Support Facilities	Medical Clinic	

Component	Existing	Proposed Additional
	Administration	
	Building	
	Machine Shop	
	Warehouse	
	Access Roads	
	Guest house/Staff	
	house	
	Waste heat recovery	
	system	
	Water Treatment	
	Facility	
	Explosive Magazine	

²⁹ The proposed cement plant of the San Miguel Northern Cement Inc. (SMNCI) will be constructed adjacent to the NCC Line 1 and Line 2. NCC will share some support facilities of the SMNCI plant. These facilities will be owned by SMNCI. The list of the facilities that will be shared by NCC and SMNCI is shown in **Table** 1-7.

Table 1-7: Shared Facilities with San Miguel Northern Cement Inc. Shared Facilities with San Miguel Northern Cement Inc.		
Operational Facilities	Capacity	
Main Crushing Plant	1400 tph	
Coal Storage	60,000 mt	
Clinker Silo 3	25,000 mt	
Clinker Silo 4	25,000 mt	
Cement Silo 10	15,000 mt	
Bulk Silo 11	5,000 mt	
Cement Silo 12	15,000 mt	
Packhouse (Roto packer 8 & 9)	2 x 120 tph	
Truck Scale (Motorpool area)	120 mt	
Truck scale (Main Crusher area)	120 mt	
SUPPORT FACILITIES	/	
 Administration Building Machine Shop Sewerage Treatment Plant 	 Warehouse Access Roads Guest house/Staff house 	

1.4.2 Support Facilities


- ³⁰ Warehouses, administration building and staff house, and parking and truck marshalling area, medical clinic and machine shop are already being used as support facilities for the operation of the Line 1 and Line 2. A water treatment facility is also being operated by NCC.
- ³¹ The quarry operation also has Explosives Magazine (warehouse/storage facility) to specifically store explosives that are used in the blasting activities. The storage facility for the ANFO is owned and managed by the NCC's quarry contractor. The storage facility is located 800 meters away from the project site. This facility was constructed based on the guidelines set by the Bureau of Fire Protection (BFP), the Philippine National Police-Firearms and Explosives Division (PNP-FED) and DAO 2000-98 to primarily decrease the risk of accidental explosion to people and property.

1.4.3 Temporary Facilities (During Construction)

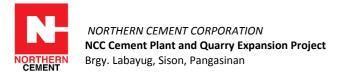

- ³² Temporary facilities during construction includes: (a) re-purposed container vans which will serve as on-site office and accommodation for workers, (b) sanitary facilities with septic tank (will be emptied-out and condemned after construction is completed), (c) temporary sub-station will be installed to provide power supply during construction activities.
- ³³ To support the construction activities, temporary facilities such as the following will be installed in the project site:
 - Re-purposed container vans which shall serve as on-site office and accommodation for workers;
 - Sanitary facilities with septic tank that will be emptied-out and condemned after construction is completed;
 - Temporary protective fencing and lighting;
 - Gatehouse and site security facilities;
 - Temporary parking space;
 - Temporary and secured equipment and material storage areas (i.e. diesel storage area);
 - Temporary site office;
 - Emergency spill kits;
 - First aid stations;
 - Temporary solid and hazardous waste storage areas;
 - Portable sanitation facilities;
 - Diesel storage tanks;
 - Generator sets

Figure 1-4: Plant Layout for the NCC Line 1 and Line 2 Expansion Project

Brgy.Labayug, Sison, Pangasinan

Figure 1-5: Support Facilities for Quarry Operation

1.4.4 Pollution Control Devices1.4.4.1 Air Pollution Control

Cement Plant Operation

- ³⁴ The priority in the cement industry is to minimize the increase in ambient particulate levels by reducing the mass load emitted from the stacks, from fugitive emissions, and from other sources. Collection and recycling of dust in the kiln gases is required to improve the efficiency of the operation and to reduce atmospheric emissions. For control of fugitive particulate emissions, ventilation systems should be used in conjunction with hoods and enclosures covering transfer points and conveyors. Drop distances should be minimized using adjustable conveyors. Dusty areas such as roads should be regularly sprinkled with water to reduce dust generation.
- ³⁵ The main air pollution sources in cement manufacturing are the milling or resizing of cement raw materials and coal; homogenizing of milled materials and kiln-feeding, kiln operation, clinker storage, transport to grinding equipment, packing of cement. Air pollution control devices such as dust collectors, bag filters and electrostatic precipitators are installed in strategic locations within the cement plant as air pollution facilities.
- ³⁶ The same air pollution control facilities will be utilized for the expansion with additional bag filters that will be installed for the additional equipment. **Table** 1-8 enumerates the existing and additional air pollution source equipment of the NCC Line 1 and Line 2 cement plant and their corresponding air pollution control facility.

Quarry Operation

³⁷ The quarry also generates dust during its operation and transport of the raw materials to the cement plant. To mitigate this, regular watering of the road is being done to lessen the dust generation.

Table 1-8: Existing and New Air Pollution Sources with Corresponding Control Facilities of NCC Line 1 and Line 2

LOCATION	Air Pollution Source Equipment	Air Pollution Control Equipment	CAPACIT (m³/hr)
Raw Materia Pre- blending	Limestone Crusher	Pulse Jet Type Baghouse	13,000
		Pulse Jet Type Baghouse*	30,000
	Rotary Dryer	Electrostatic Precipitator	342,500
		Pulse Jet Type Baghouse*	80,000
	Hammer Mill	Pulse Jet Type Baghouse	15,000
	Raw Ball Mill	Electrostatic Precipitators & Gas	342,500
		Conditioning Towers	
	Roller Press*	Pulse Jet Type Baghouse*	35,000
Homogenizing & Kiln	Homogenizing Silos	Row Type Baghouse	49,980
eeding	Kiln Feeding System w/	Pulse Jet Type Baghouse	15,000
	Bucket Elevators	Pulse Jet Type Baghouse	25,000
		Pulse Jet Type Baghouse	15,000
Calcining & Burning	Rotary Kiln	Electrostatic Precipitator & Gas Conditioning Tower	342,500
	Clinker Cooler	Multi-Cyclone Dust Collector	162,000
Clinker Storage and	Enclosed Bucket Elevator	Pulse Jet Type Baghouse	6,000
Fransport	Clinker Silo	Pulse Jet Type Baghouse	8,000
	Concrete Clinker Silo*	Pulse Jet Type Baghouse*	36,000
	Steel Clinker Silo*	Pulse Jet Type Baghouse*	15,000
	Enclosed Bucket Elevator and Clinker Bunker	Pulse Jet Type Baghouse	6,000
	Clinker Silo with Discharger and Transport Conveyor	Pulse Jet Type Baghouse	10,000
Cement Grinding and	Polycom Finish Mill	Pulse Jet Type Baghouse	85,000
Packing		Pulse Jet Type Baghouse	55,000
	Finish Ball Mill	Row Type Baghouse	46,000
Cement Transport	Bucket Elevator	Pulse Jet Type Baghouse	16,000
	Rotary Packing Machine	Row Type Baghouse	20,000
	Cement Silos	Pulse Jet Type Baghouse	11,500
		Pulse Jet Type Baghouse	4,000
Bulk Loading	Pneumatic Pump	Pulse Jet Type Baghouse	11,500
Coal Milling	Coal Flash Dryer	Plenum Type Baghouse	40,000
	Raymond Vertical Mill	Pulse Jet Type Baghouse	30,000
	Coal Mill	Pulse Jet Type Baghouse	48,100
	Ball Mill*	Pulse Jet Type Baghouse*	60,000
	Fine Coal Silo	Circular Type Baghouse	5,100
Coal Grinding	Hammer Mill Flash Dryer and Ball Mill	Pulse Jet Type Baghouse	40,000
Quarry Area			

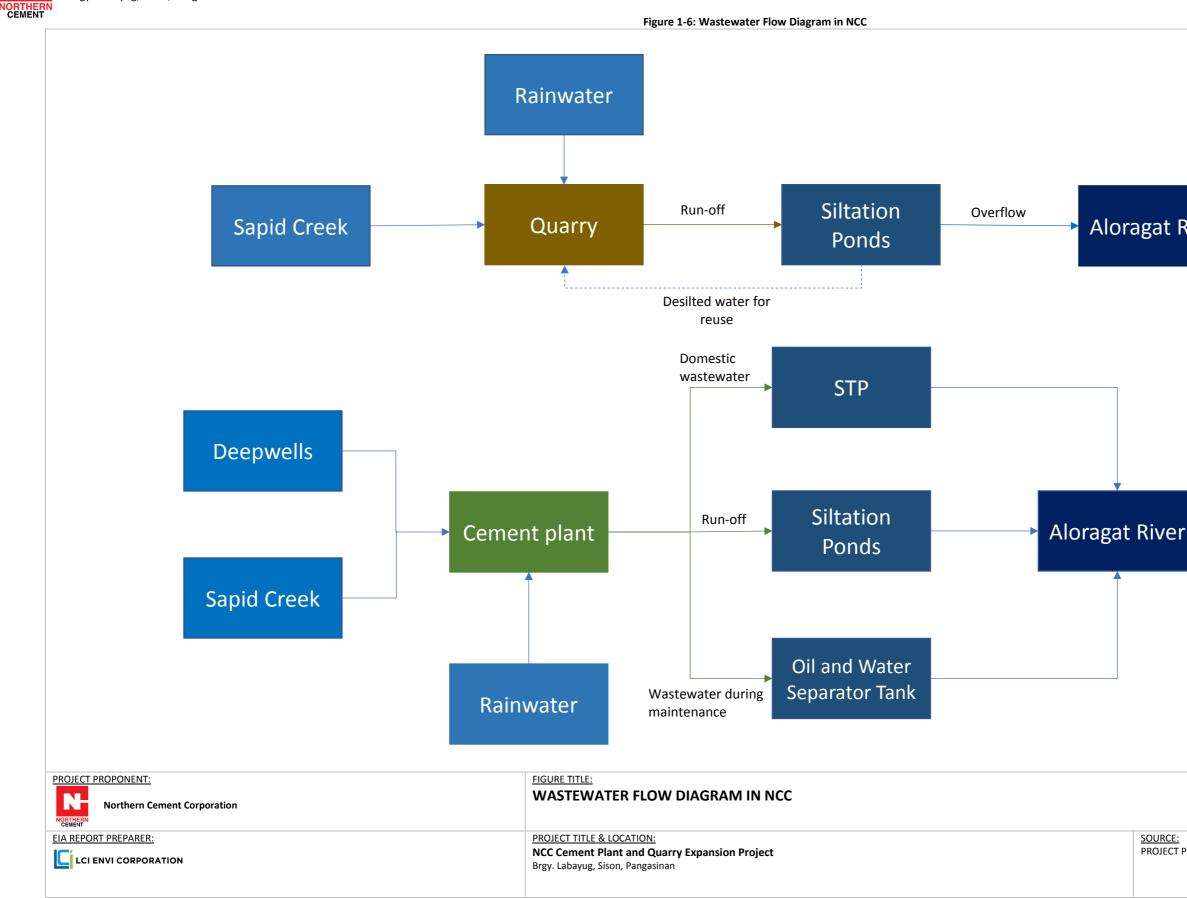
1.4.4.2 Water Pollution Control

- ³⁸ Wastewater generated from the operation of the NCC Line 1 and 2 cement plant and quarry consist of domestic wastewater, wastewater during maintenance activities and surface run-off only. The wastewater flow diagram of NCC is shown in **Figure** 1-6.
- ³⁹ The stormwater drainage systems of quarry and the cement plant are shown in **Figure 1-7** and **Figure 1-8**, respectively.
- ⁴⁰ **Figure** 1-9 shows the sewer layout of NCC Line 1 and Line 2 while the location of the effluent outfalls is shown in **Figure** 1-10.

Septic tanks and Sewage Treatment Plant

- ⁴¹ Septic tanks are installed in the cement plant to pre-treat the domestic wastewater generated. Effluent of the septic tanks are discharged to the Bagutan Pond. The existing domestic wastewater generation at NCC Line 1 and Line 2 cement plant is 66.5 m³/day. With the proposed expansion, additional workers will be required, thus the domestic wastewater is estimated to increase to 72 m³/day.
- ⁴² The domestic wastewater from the NCC will be directed to the Sewage Treatment Plant that will be constructed by SMNCI. The STP will treat both the domestic wastewater from NCC and SMNCI cement plant. The estimated design capacity of the STP is 80 m³/day. The effluent of the STP will be discharged to Aloragat River.

Siltation Ponds

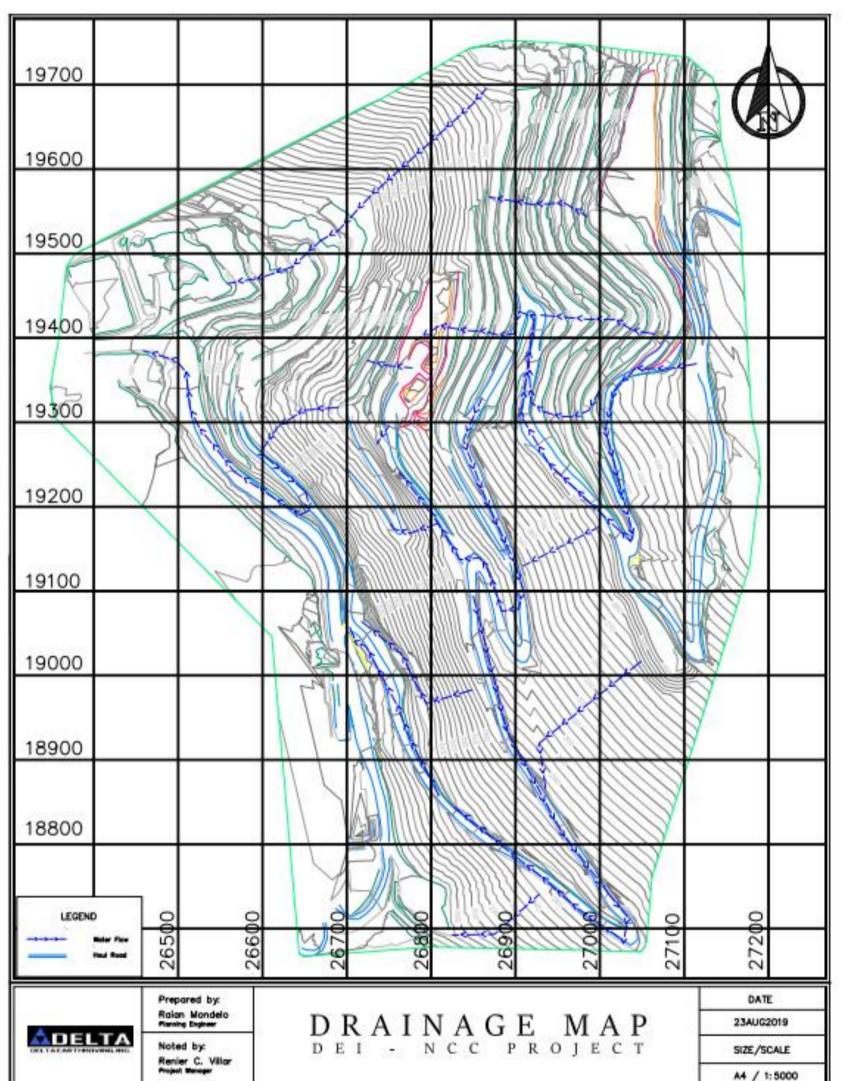

- ⁴³ Surface run-off are collected in the siltation ponds. Rainwater flows to the existing drainage system inside the plant going to the siltation ponds. Ponds will retain the water until most of the dust particulates and suspended solids settle at the bottom of the pond. In order to maintain the efficiency of the ponds, the ponds are frequently desilted. Silt in the drainage are also be regularly removed. The collected silt will be re-used as raw material for cement manufacture. There are four existing siltation ponds; two are located in the limestone quarry area and two in the shale quarry area.
- ⁴⁴ The effluent of the siltation ponds flows to an open channel line and open culvert going to the impounding reservoir. Desilted water from the siltation ponds are reused in the quarry operation. The overflow of the ponds in the limestone quarry area is discharged at the Aloragat River.

Oil and Water Separator Tanks

⁴⁵ There are also two oil and water tank separators installed in the cement plant. These tanks are located at the motor pool area and at the coal storage area. These tanks capture oil-contaminated water during operation and maintenance activities of the cement plant. The effluent from these tanks is also discharged in the Aloragat River. The proponent has secured a wastewater discharge permit from the DENR-EMB Region 1, attached as **Annex 10**.

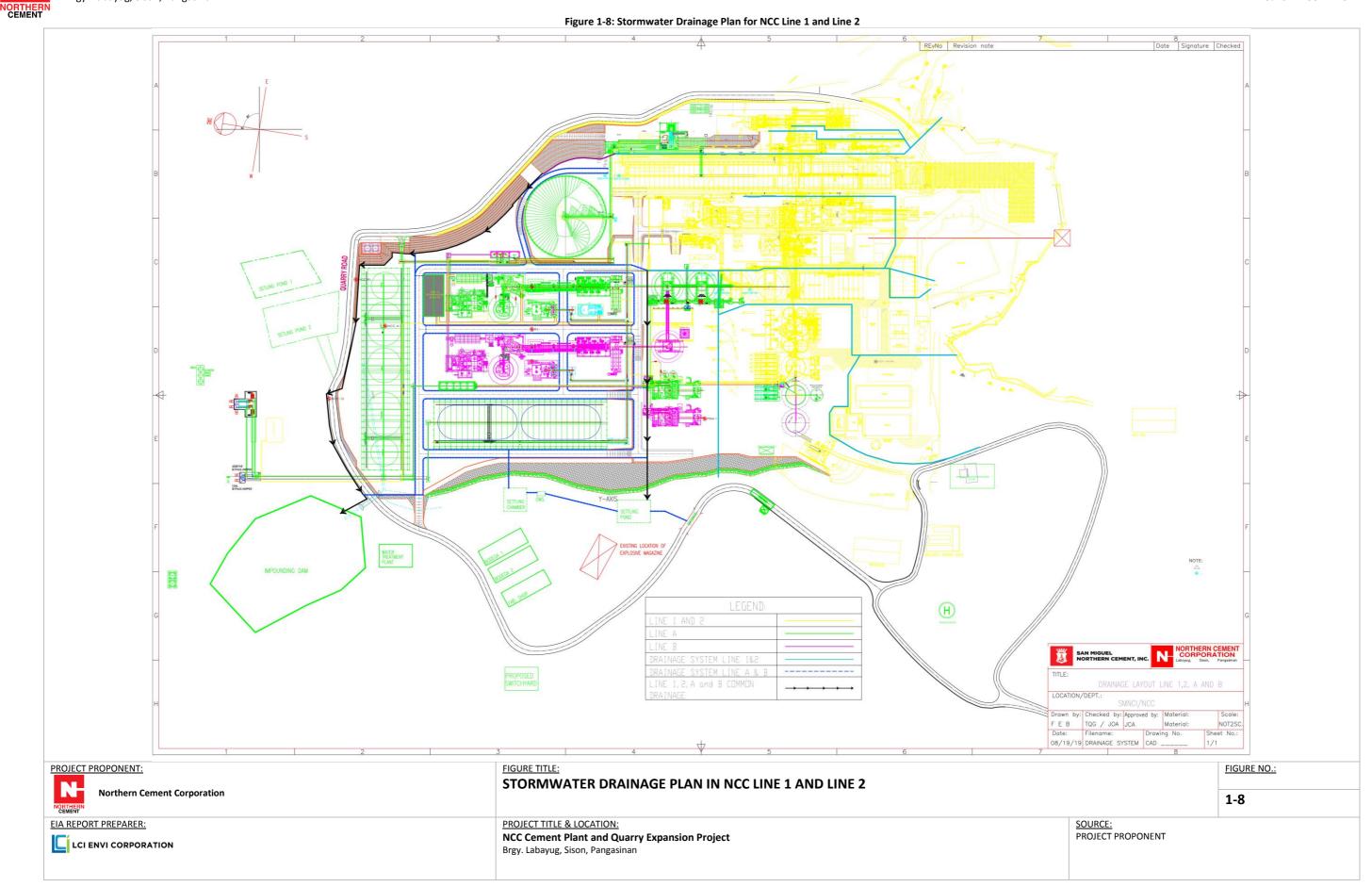
Water Pollution Control	Location	Capacity
Siltation pond	Limestone quarry area	3,940 m³
Siltation pond	Limestone quarry area	2,250 m ³
Siltation pond	Shale quarry area	2,600 m ³
Siltation pond	Shale quarry area	1,000 m ³
Oil & Water Separator	Coal Storage	1,000 m ³
Oil & Water Separator	Motor Pool Area	600 m ³
Sewage Treatment Plant	SMNCI Cement Plant	80 m³/day

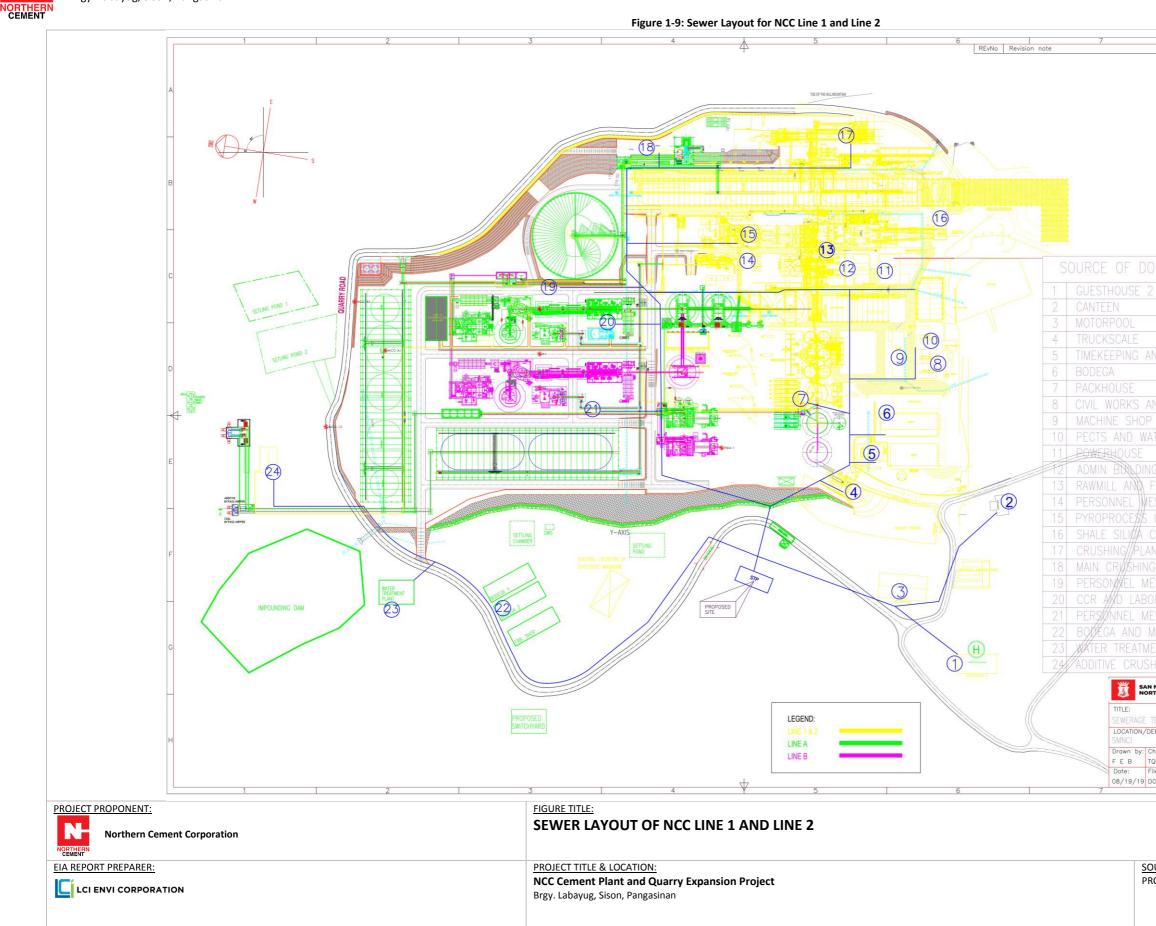
Table 1-9: Location and Capacities of Water Pollution Control Facilitie



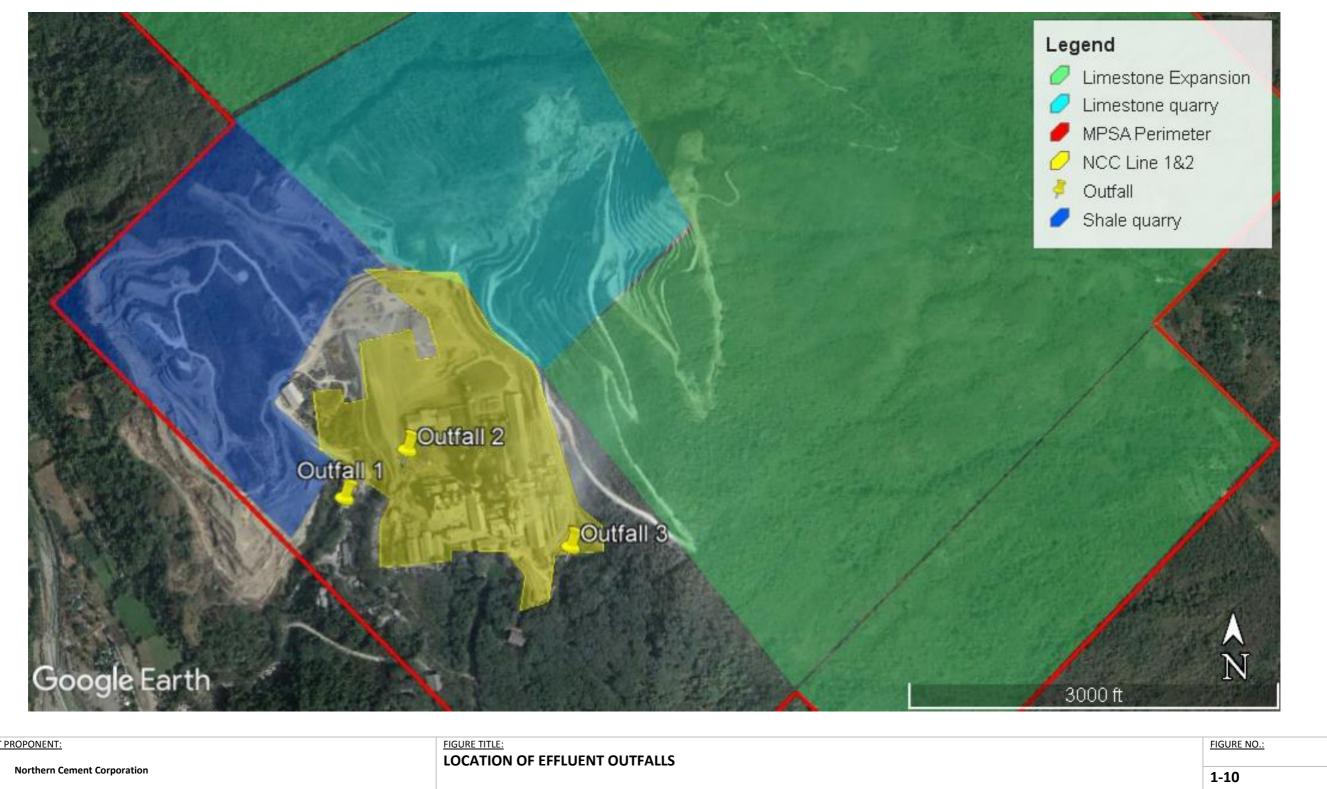
Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

Aloragat River


FIGURE NO .: 1-6 SOURCE: PROJECT PROPONENT



	10180 515M		M / 10	000
PROJECT PROPONENT:		FIGURE TITLE: DRAINAGE PLAN FOR QUARRY AREA		FIGURE NO.:
Northern Cement Corporation				1-7
EIA REPORT PREPARER:		PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: PROJECT PROPONEN	т


Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

8	
Date Signature C	hecked
	E
	Ē
	_
MESTIC WASTE WATER	(
ND CLINIC	
	(
ND ENGINEERING	
	Ð
TER TREATMENT	
G AND LABORATORY	
FINISH MILL CONTROL ROOM	Λ
ESS HALL	
CONTROL ROOM	
CRUSHER	
NT CONTROL ROOM	
G CONTROL ROOM	
ESS HALL	
DRATORY	
ESS HALL	
MACHINE SHOP	
ENT CONTROL PANEL	
HING CONTROL ROOM	
I MIGUEL RTHERN CEMENT, INC.	MENT
Laboyug, Sison, Pi	ingosition
TREATMENT PLANT	
EPT.:	,
	Scale:
	NOT2SC. t No.:
DOMESTIC WASTE CAD 1/1	
0	
	FIGU
	1 (
	1-9
OURCE:	1
ROJECT PROPONENT	

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: LOCATION OF EFFLUENT OUTFALLS	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION:	SO

LCI ENVI CORPORATION

NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan

Environmental Performance Report and Management Plan SECTION 1 PROJECT DESCRIPTION

SOURCE: PROJECT PROPONENT

1.4.4.3 Solid Waste Control

- ⁴⁶ A temporary solid waste storage area will be provided in the site during construction. All solid wastes will be properly segregated and disposed. Designated spoil disposal area will also be provided. All of these will be located inside the project site
- ⁴⁷ NCC is implementing its solid waste management plan. Solid wastes from the office, dormitory/kitchen and other facilities are segregated as to bio-degradable or not and will be disposed of accordingly with the help of the municipal government. NCC has a Materials Recovery Facility (MRF) and designated scrap yard. Designated solid waste management area is also provided on-site.

1.4.4.4 Chemicals and Hazardous Waste Control

⁴⁸ NCC Line 1 and 2 are using and generating controlled chemicals wastes and hazardous materials in its operation. NCC has secured necessary permits in accordance to the guidelines under DAO 1992-29, the Implementing Rules and Regulations of Republic Act 6969, the Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990.

49	Table 1-10 summarizes the information and volume regarding the controlled chemicals used.
----	--

Common Name	Chemical Abstract Service No. / Chemical Formula	Trademark	Average Annual Volume	
Ammonium Nitrate	NH ₄ OH ₃	ORICA	12,100 kg	
Ammonium Hydroxide	1336-21-6/ NH4OH	Merck JT Baker	1 L	
Sodium Hydroxide	1310-73-2/NAOH	Merck JT Baker	40 g	
Hydrochloric Acid	76-01-0/ HCL	Merck JT Baker	2.3 L	
Ethyl Alcohol	64175 /C ₂ H ₅ OH	Merck JT Baker	8 L	
Ethelene Glycol	107-21-1 /C ₂ H ₆ O ₂	Merck JT Baker	120 L	
Ammonium Nitrate	6484-52-2 /NH4NO2	Merck JT Baker	180 g	
Ammonium Oxalate	111-38-8/(NH ₄) ₂ C ₂ O ₄	Merck JT Baker	40 g	
Bromocresol Green Indicator	76-60-8/C 21H14Br4 O5S	Merck JT Baker	0.33 L	

Table 1-10: Controlled Chemicals and Hazardous Wastes to be generated by the Project

Source: NCC

⁵⁰ The following hazardous wastes are being generated by the NCC Line 1 and Line 2 that requires handling and treatment by trained professionals in properly equipped facilities. These wastes are stored on-site prior to hauling out of DENR-accredited hazardous waste transporters.

HW No.	HW Classification	Physical Property	HW Cataloguing	HW Volume Generated
L101	Waste Oils	Liquid	Flammable / Toxic	9 MT
D406	Battery	Solid	Toxic/Corrosive	309 pcs
D407	Fluorescent	Solid	Тохіс	723 pcs
L104	Oil Contaminated Materials (used filters)	Solid	Тохіс	1.2 MT
L104	Oil Contaminated Materials (used gloves / rags)	Solid	Toxic	0.24 MT

 Table 1-11: Hazardous Wastes Generated by NCC Line 1 and Line 2

HW No.	HW Classification	Physical Property	HW Cataloguing	HW Volume Generated
M501	Clinic Waste	Solid	Pathogenic or Infectious Waste	0.04 MT

2.4.7.1 Ash Disposal and Absorption

⁵¹ Ash from coal and fuels used in clinkering mix with the materials during the clinkering process and become part of the clinker product. Residual materials of heavy metals in the co-processed industrial wastes such as the heavy fuels adhere to the ash when the fuel is fully combusted and eventually become encapsulated in concrete, away from causing environmental harm or damage. These metallic particulates improve the quality and performance of the resulting cement.

1.4.5 Access Road

⁵² A private road network, owned by Northern Cement Corporation, was already constructed and currently being utilized, leading to and from the National Highway, by Northern Cement Corporation. In addition, a new industrial access road will be constructed traversing barangay Sugcong, Nama, Inoman and Bobonan in Pozorrubio town having its road entry right across the exit/entrance of TPLEX Pozorrubio. An ECC was already secured by the proponent for the construction of the new access road last June 20, 2019 with reference no. ECC-OL-R01-2019-0150.

1.4.6 Alternative Fuel

⁵³ There are two types of fuels used in the cement production process; bunker oil for the kiln startup and coal for the normal kiln operation. As part of their system and facilities improvement, NCC intends to use alternative fuels in their kiln operation. The proponent will submit its technical position on its use of alternative fuels to EMB and secure the necessary permits from appropriate agencies prior to implementation. **Table** 1-12 details the potential alternative fuels that will be used by NCC.

1.4.6.1 Kiln Start-up

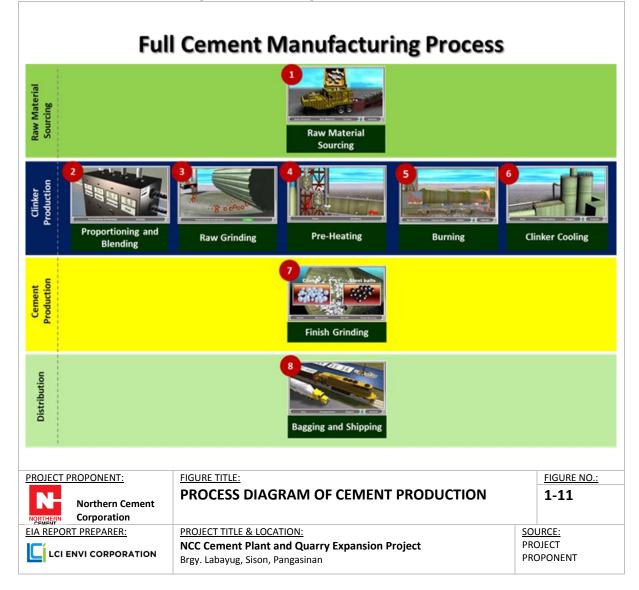
⁵⁴ Used oil can be added to the bunker oil for the kiln start-up at temperature of 1,200 °C. The calorific value of used oil to be added to kiln fuel is 10,813 kcal/kg, with sulfur content of 1.19%. It is estimated that about 43,200 liters of used oil will be used annually. This corresponds to about 10% of the bunker oil requirement NCC shall manage the used oil fuel additive in accordance with RA 6969. The waste acceptance criteria will comply with guidance under DAO 2000-81. The used oil will be sourced from the existing operation of the NCC cement plant and quarry.

1.4.6.2 Kiln Calcination

- ⁵⁵ There are four alternative fuels that NCC is considering to be added to the coal for kiln operation. These area pet coke, used tires, rice husk and refuse derived fuel.
- ⁵⁶ Petroleum coke, or pet coke, is a final carbon-rich solid material derived from a thermo-based chemical engineering process. Fuel-grade pet coke has high sulfur and heavy metals content. Coprocessing of pet coke in cement kiln has advantage of sulfur adhesion to the limestone raw material and immobilization of heavy metals into the clinker structure. It is estimated that about 54,161 MT of pet coke will be utilized annually.

- Used vehicle tires can also be shredded and mixed with low-sulfur coal to fire up the kiln. NCC operations produce 2,400 to 4,800 MT of waste vehicle tires annually and plans to utilize it as source of tire-derived fuel mixed with coal to be burned in kilns.
- ⁵⁸ In addition, domestic and industrial wastes can be used as refuse-derived fuel. This is composed of mostly non-recyclables plastic wastes, paper and other combustible wastes.

Kiln Operation	TYPE OF FUEL USED	Proposed AFR	Energy Potential (Mcal per MT)	% FUEL Substitution	Total AFR Consumption per Year	Potential Source
Kiln Start-up (Temp @ 1200°C)	Bunker Oil	Used Oil	10,813	0-10%	43,200 Liters	NCC Cement Plant and Quarry Operation
Kiln Calcination	Coal	Petcoke	8,395	0-30%	54,161 MT	Petron Refinery Plant
		Shredded Tires	8,609	0-10%	15,508 MT	NCC and other cement hauler partners
		Rice Husk	2,400	0-10%	43,200 MT	NCC's partner cement dealers in Isabela, Cagayan, Pangasinan, Nueva Ecija & Nueva Viscaya and other areas in Northern Luzon.
		Refuse Derived Fuel from Municipal Waste	2,957	0-10%	15,508 MT	NCC and local RDF Suppliers


Table 1-12: Proposed Alternative Fuels for NCC Line 1 and Line 2 Cement Plant

1.5 Process/Technology

⁵⁹ The cement manufacturing process flow for NCC is shown in **Figure** 1-11. Dry process of cement production is being utilized by NCC. The next subsections further discuss the processes involved in the quarrying and cement production operation of NCC.

Figure 1-11: Process Diagram of Cement Production

1.5.1 Raw Materials

⁶⁰ The amount of raw materials to produce 1.76 MMT of clinker per year is shown in **Table** 1-13. The material balance showing the mineral requirement is shown in **Figure** 1-12.

Table 1-15. Annual Naw Waterial Requirement for Nee Cement Flant								
Material	Wet Weight	Wet Weight Percentage (MT/yr)		Lost in				
	(MT/yr)			Ignition				
Limestone	2,208,909	75.92%	2,144,640	2.9%				
Shale	566,565	19.47%	492,800	13.0%				
Silica	284,800	9.79%	243,520	14.5%				
Iron Ore	18,560	0.63%	17,280	4.9%				
Bottom Ash	13,760	0.47%	11,520	15.3%				
Source: NCC								

Table 1-13: Annual Raw Material Requirement for NCC Cement Plant

1.5.1.1 Limestone

⁶¹ Limestone requirement will be sourced from the quarry operations of NCC. The measured limestone resources within NCC MPSA 106-98-1 stands at 720.20 million metric tons as of August 2019 and will be more than sufficient to support the expansion of Line 1 and Line 2.

1.5.1.2 Shale

- ⁶² The mineable shale reserved from the currently active quarry in MPSA 106-98-1 is 30.19 million metric tons.
- ⁶³ Please refer to **Table** 1-19 for the details on the annual extraction rate of limestone and shale in the quarry areas.

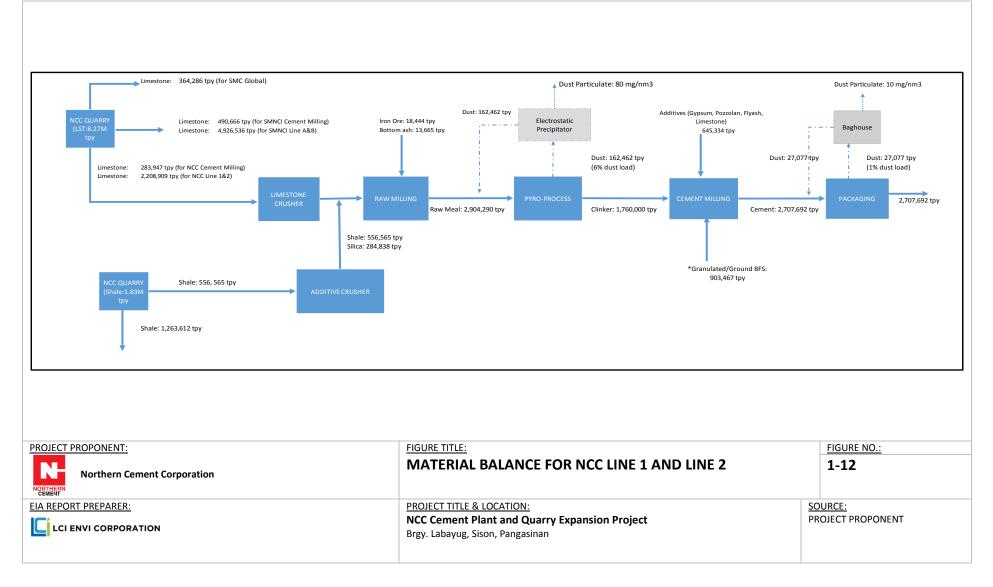
1.5.1.3 Pozzolan

- ⁶⁴ Pozzolan is used as a cementitious additive for grinding clinker to produce cement. For every ton of clinker produced, 71 kg pozzolan is required to produce cement. NCC has submitted application for exploration and subsequently extraction permit for Pozzolan from an area of 493.6577 hectares straddling Barangay Mangan Dampay in Malasiqui and La Paz in Villasis, both in Pangasinan. Pre-feasibility volumes measured, indicated and inferred amount to 8,416,320 mt., with a Potential Resource amounting to 120,000,000 cubic meters. Using an average bulk density (compact) of 1.28727 MT/m³, the Geologic Reserve is estimated at 154,440,000 metric tons.
- ⁶⁵ The actual land use of the area applied for pozzolan exploration are idle lands, grassland, agriculture, residential areas and less than 20% tree cover. Predominant (60%) land slope is < 18. Almost 100% of the area have surface claimants paying their tax declaration certificates. Fly ash, ash from rice husk and slag be used as substitute for pozzolan. This project will start commercial production in 2021 and by then it will have secured supply agreements for the pozzolan or its substitute.

1.5.1.4 Fly Ash and Bottom Ash

⁶⁶ Fly ash (F/A) and bottom ash (B/A) will come from Petron refinery in Masinloc or Sual. Petron refineries in Masinloc and Sual are part of the conglomerate that assumed majority holdings in NCC ownership structure and assures NCC and this project of the supply of suitable fly ash and bottom ash. NCC QA department conducts chemical analyses of each raw material or fuel to determine whether the material acceptance standard is met.

1.5.1.5 Iron Sand


⁶⁷ The use of Iron Sand in raw mix preparation will correct the iron oxide Fe₂O₃ content of the resulting raw meal. NCC has quality requirements for all materials used in production and all potential supplies are tested by the Quality Assurance laboratory.

1.5.1.6 Granulated Blast Furnace Slag (GBFS)

⁶⁸ The GBFS will enter the cement manufacturing stream at final grinding process and not before or during calcining process and therefore the GBFS will not be subjected to extreme heat of @1,500 during clinkering process. The components of the GBFS are expected to mainly keep their composition and structure unlike raw meal which undergo chemical change during the calcining process.

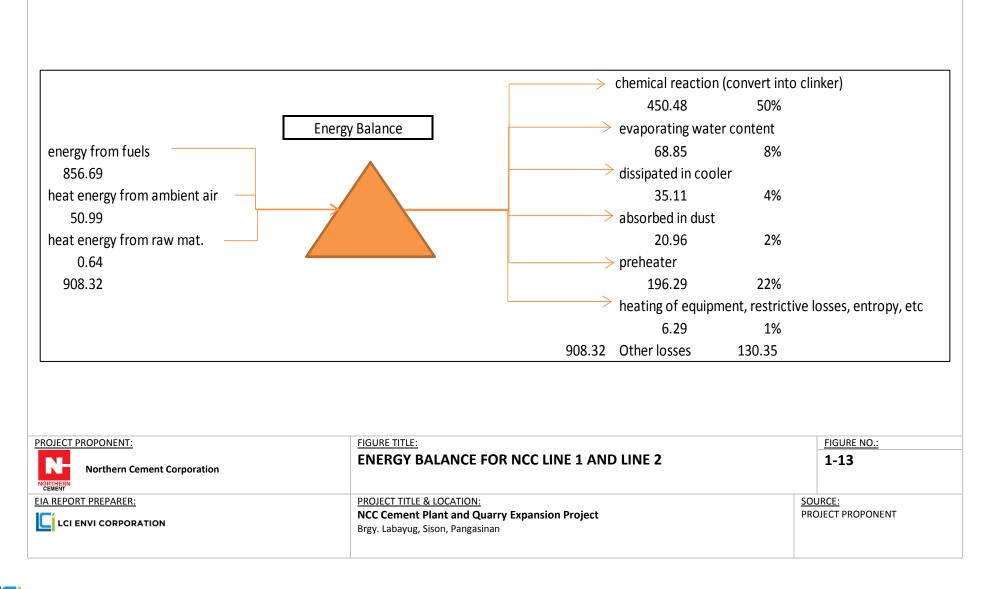


Figure 1-12: Material Balance for NCC Line 1 and Line 2 Cement Plant and Quarry Operation

Figure 1-13: Energy Balance for NCC Line 1 and Line 2

1.5.2 Quarry Operation

1.5.2.1 Shale and Limestone Excavation

- 69 At the production or extraction stage, the project's major activities will include drilling and blasting on hard ground and dozing the minerals followed by loading and hauling. The rock fragmentation will be accomplished through drilling and blasting since the limestone deposit is generally hard and massive. Hydraulic drills will be used for drilling production blast-holes. Production drilling is designed on a 4 meter by 6-meter staggered grid pattern. Blasthole diameter will be a minimum of 150 millimeters the total drill hole depth will be 11.2 meters inclusive of the sub-grade. Blasting will be performed daily and will be scheduled on break time. The main explosive ingredient will be a pre-mixed Ammonium Nitrate Fuel Oil (ANFO) primed with dynamite. Detonating cords will be used for down line and trunkline, and the charge will be initiated using No. 6 Ordinary Blasting Cap (OBC) and safety fuse. Controlled blasting will be employed at areas that are near structures by using appropriate delays. Dynamites will be primed with in-hole non-electric (NONEL) detonators, which will be connected to surface delays/connectors. All blasting activities will be supervised by a licensed blaster and shall conform to safety procedures. Limestone will be hauled and carried out by 60-ton off-road mining trucks. Blasted limestone will be loaded by hydraulic shovels into the trucks and transported to the primary crusher and further to the secondary crusher at the cement plant thru a conveyor belt.
- 70 The excavation of shale and limestone uses benching method. With this method, the overburden, the soil and rocks that are covering the limestone and shale deposits, will be removed by creating a series of step levels or 'staircases', one top of each other. After the guarry has progressed, the mine site will resemble a terraced surface. This procedure reduces the risks of sudden landslides and uncontrolled erosions. The overburden shall be stored in Plant's holding facility, which then will be returned to the mined surfaces after the deposits have been gathered.
- 71 The approved quarry slope and contour canal designs for the limestone and shale quarry are summarized in Table 1-14. Slice plans for the limestone and shale guarry from 2016-2020 within the MPSA are shown in **Figure** 1-14 and **Figure** 1-15, respectively.

Idbi	e 1-14: Quarry Slope and Contour Cana	•
	Specifica	tions
	Limestone Quarry	Shale Quarry
Bench height	10m	5m
Bench width	Average 10m, varying	10m, varies
Bench super elevation	1.5%	
Bench slope	70%	50-60%
Main ramp width	15m	10m
Main drainage slope	1.5%	1.5%
Main ramp gradient	10%	10%
Bench outer edge cap height	0.5m	
Contour canal	1m x 0.5m with settling sump every 500m (of 1m x 1m)	1m x 0.5m with sump every 500m (of 1m x 1m)
Final base elevation	171 masl	122 masl

Table 1-14: Quarry Slope and Contour Canal Design

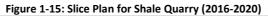


Figure 1-14: Slice Plan for Limestone Quarry (2016-2020)

Environmental Performance Report and Management Plan Section 1 PROJECT DESCRIPTION

Environmental Performance Report and Management Plan Section 1 PROJECT DESCRIPTION

1.5.2.2 Limestone Crushing and Conveying

- ⁷² The mined limestone will be dumped in the two receiving hopper through open trucks. Two heavyduty apron feeders will be located under every receiving hopper for two grades limestone feeding. Limestone from apron feeder will be fed to Jaw Crusher. Coarse limestone will be fed to crusher and consequently to the secondary Impact crusher. The crushed limestone, fine materials, and spillage from apron feeder will be discharged to the belt conveyor and finally be conveyed to the limestone pre-blending storage.
- ⁷³ Shale, silica and other raw materials such as for pozzolan, bottom ash on the other hand are dried and reduced to the desired size by means of the Roller and Fam Crushers going to inline Rotary Dryers.

1.5.3 Cement Plant Operation

1.5.3.1 Raw Meal Grinding and Homogenization

- ⁷⁴ Crushed materials such as limestone, shale, silica and iron sand are then fed proportionately on apron weigh feeders and ground to powder in a vertical roller mill.
- ⁷⁵ The raw mix will be conveyed to the Continuous Homogenizing Silo. The raw mix is stored and blended using adequate aeration system to fluidize the material and attain a consistent homogenizing efficiency ready for feeding to the kiln. The system will be equipped with modern quality control devices such as automatic on-line samplers and cross belt analyzers which will continuously monitor the composition and regulate the weigh feeders to adjust to the target kiln feed chemistry.

1.5.3.2 Pyro-processing

- ⁷⁶ The pyro-processing process involves feeding the raw mix into a kiln system where it is gradually heated. Kiln feed (raw mix) are conveyed to the five stages preheater then to the rotary kiln. Typically, a peak temperature of 1400-1450 °C is required to complete the reactions and produce C3S (Alite), the characteristic constituent of Portland cement. Partial melting causes the material to aggregate into lumps or nodules known as clinker which is then cooled with air to 100-200°C. Waste heat from the kiln system is used for drying the raw materials in the raw grinding section of the production process. Approximately 1.60-1.65 MT of raw mix is required to produce 1 MT of clinker, due to the calcination of the limestone component of the raw mix. Clinker product is transported to clinker silo for storage.
- ⁷⁷ The kiln was upgraded to accommodate the increased clinker production and was equipped to handle alternative fuels such as petcoke, refuse-derived fuel, used oil, used tires and rice husks.

1.5.3.3 Use of Alternative Fuels in Pyro-Processing

- ⁷⁸ Bunker oil is being used for preheating the cement kiln. NCC intends to use alternative fuel such as used oil during the preheating of kiln. Used oil will be fed to the kiln through the normal process of adding bunker oil at the main burner when internal kiln reaches a steady temperature of 1,200 °C.
- ⁷⁹ When the temperature reaches 1400-1450 °C, alternative fuel such as pet coke, used rubber tires and other combustible domestic wastes will be used in the pyro processing operations. It is important to add the alternative fuels at high temperature to avoid undesirable stack emissions such as dioxin and furans and persistent organic pollutants (POPs).
- ⁸⁰ Heavy fuels generate more particulate pollutants when combusted in lower temperate. Pollutants assimilated by previously used materials such as heavy metals and other impurities are fully

destroyed and degenerate into ash, giving particulate filters a longer duty life and creating less opportunity for increased air pollution.

⁸¹ **Figure 1-16** shows the diagram for the entry point of alternative fuel in the kiln.

1.5.3.4 Clinker Cooling

⁸² Clinker is discharged red-hot from the lower end of the kiln and brought down to handling temperature in various types of coolers. Part of the air that is heated during the clinker cooling is recycled back to the rotary kiln, while the other portion is fed to the coal grinding machine. The waste energy recovered in the recycled air reduce the amount of fuel needed to heat up the raw materials fed into the kiln into the ideal temperature where calcination occurs, as well as clinker grinding is performed. The recycled energy also acts to control coal moisture for better material flow within the grinding subsystem and better coal combustion performance. With lesser fuel to burn per metric ton of clinker produced, gaseous pollutant emissions will also be reduced.

1.5.3.5 Cement Grinding

- ⁸³ Clinker will be extracted from the bottom of the silos and conveyed to a feed bin from where it will be dosed by a weigh feeder and then further conveyed to an elevator then fed into the grinding mill.
- ⁸⁴ The other raw materials will be mechanically reclaimed by a reclaimer and conveyed to feed bins from where it will be dosed by weigh feeders for conveying and feeding into the grinding mill. Fine raw materials such as fly ash will pass thru a weigh feeder before feeding into the mill.
- ⁸⁵ The materials will be ground in the ball mills. Hot air is injected from underneath the nozzle ring outside the periphery of the rotating table. This jet of hot air dries the materials and the fine particles are entrained by the gases exiting thru a rotating classifier at the upper portion of the mill body. There is internal recirculation of the particles that could not pass through the internal classifier. The coarse particles are rejected out of the mill and are re-circulated into the mill for regrinding. The finer particles pass thru the classifier and are carried by the exit gases that will pass thru a bag filter where the finished cement will be separated by the bags and collected at the bottom of the bag filter and subsequently conveyed into the cement silos. There is internal recirculation of the particles that could not pass thru the internal classifier.

1.5.3.6 Cement Storage and Dispatch

⁸⁶ The product can be purchased either by bulk loading or by packed bags. After grinding, the cement is conveyed to the cement silo for storage prior to packing. The stored cement is then conveyed to the rotary packer that will pack the products into 40-kilo bags or one-tonner bags, depending on market requirements. The packed cement in bags are promptly brought to a temporary storage area or manually loaded onto awaiting delivery trucks. Another storage silo for bulk loading is available to feed cement into bulk carriers.

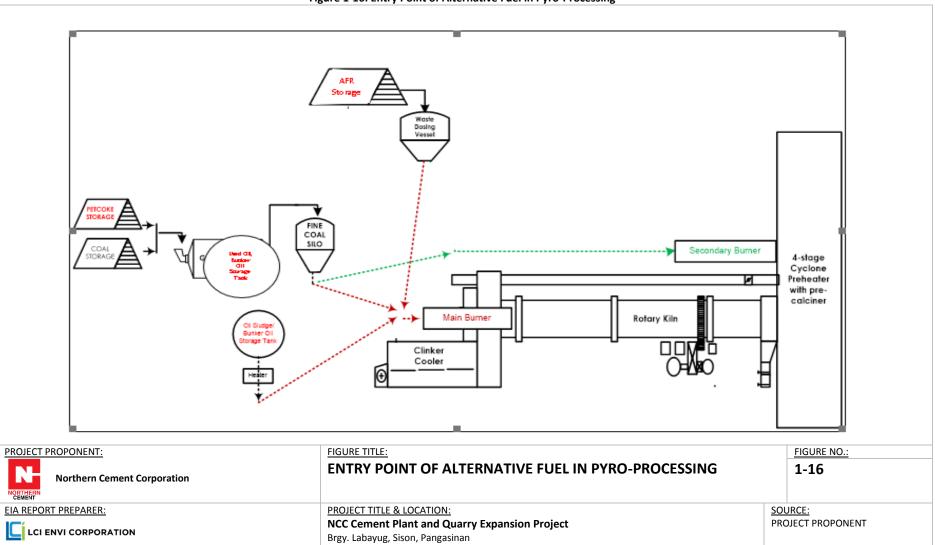


Figure 1-16: Entry Point of Alternative Fuel in Pyro-Processing

1.6 Project Utilities

1.6.1 Water Supply and Demand

⁸⁷ The total water requirement for the cement plant and quarry expansion of NCC is 1,300 m³/day. NCC is sourcing its water requirements from three existing deep wells and from the Sapid Creek. NCC has necessary NWRB permits for its water supply as shown in the table below. Desilted water from the siltation ponds are also being reused by NCC. Copy of the NWRB permits is attached in **Annex 10**.

Water Source	NWRB Permit No.	Allowed Extraction Rate (L/s)	Date Issued			
Deepwell 1	18918	5.7	February 19, 2004			
Deepwell 2	I-PAN-2018-06-087	1.3	May 17, 2018			
Deepwell 3	I-PAN-2018-06-088	1.43	May 17, 2018			
Sapid Creek	20536	16.5	November 18, 2005			

Table 1-15: NWRB permits for NCC's water supply

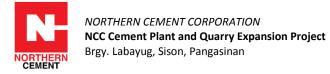
⁸⁸ From the water source, the water is stored in the ponds and reservoir and is being treated in the water treatment facility before being used in the cement plant operation.

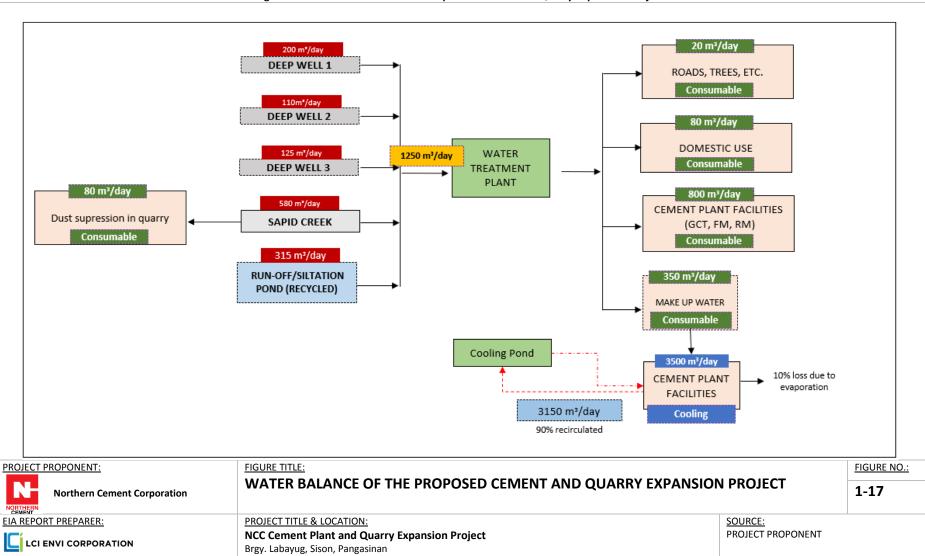
Table 1-16: Ponds and Reservoir of NCC

Ponds/Reservoir	Volume Capacity (m ³)
Cooling Ponds	22,828
Sapid Main Pond	5,322
Sapid Reservoir	3,492

⁸⁹ **Table** 1-17 summarizes the anticipated water consumption of the cement plant and quarry expansion project while **Figure** 1-17 shows the water balance of the expansion project.

Water Use	Water Requirement with Expansion (m ³ /day)
Domestic Use	100
Cement Plant Operation (GCT, Dust Control)	800
Make-up water	350
Dust suppression in quarry area	80
Total	1,330
Recirculating Cooling Water	3,500


Cement Plant Operation


- ⁹⁰ The existing operation of the NCC Line 1 and Line 2 is consuming an average of 918 m³/day of water. This includes the water required for domestic use, make-up water and the water used in the cement plant such as for maintenance, cleaning, for the dust suppression in the crusher and spray water for the pre-heater gases conditioning tower. The expansion of the cement plant will increase the required water into 1,250 m³/day.
- ⁹¹ For the new capacity of Line 1 and Line 2, the cement plant will initially require 3,500 m³/day of recirculating water. This cooling water after use is stored in the cooling ponds for recirculation. About 350 m³/day of make-up water is required to replace water loss due to evaporation.

Quarry Operation

For the quarry operation, water is needed for the constant watering of the quarry road to lessen the dust emissions. The proposed increased of production capacity will increase the water requirement from 40 m^3 /day to 80 m^3 /day.

Figure 1-17: Water Balance of the Proposed Cement and Quarry Expansion Project

1.6.2 Power Supply and Demand

- ⁹³ NCC currently sources its power requirement from the Luzon grid. The existing operation of the NCC Line 1 and Line 2 is consuming 180,000 MWH of power per year. With the expansion and upgrading of the cement plant, the new power requirement will only be 190,000 MWH per year. This is due to the maintenance and improvement works that the proponent will do to the existing lines to further increase the system efficiencies.
- ⁹⁴ In addition, the Plant Complex is equipped with the following back-up power sources:
 - Three (3) units of 536 HP diesel engines coupled to 625 KVA Power System Alternator;
 - One (1) unit 798 HP General Motors Detroit Diesel Engine with 625 KVA coupled to a Siemens Alternator; and
- ⁹⁵ During construction of the proposed improvements, additional standby generator set (1x500KVA, 2x 320 KVA) will be provided to prevent work interruptions in the event of power outages.

1.7 Project Size

1.7.1 Cement Production

⁹⁶ Northern Cement Corporation intends to increase the total clinker production capacity of Line 1 and Line 2 cement plant from 4,000 TPD to 5,500 TPD equivalent to 2,707,692 tons per year of cement. The breakdown of this production is presented in **Table** 1-18.

	Clinker (TPY)	Additives (TPY)	Total Cement Produced (TPY)	Cement Bags Produced
Line 1	880,000	774,400.5	1,353,846	32,500,000
Line 2	880,000	774,400.5	1,353,846	32,500,000
Total	1,760,000	1,548,801	2,707,692	65,000,000

Table 1-18: New Clinker and Cement Production Capacity of NCC Line 1 and Line 2

1.7.2 Allowable Quarry Area

- ⁹⁷ NCC is currently quarrying limestone and shale to supply the raw material requirement of the existing operation of the Line 1 and Line 2 cement plant. The NCC quarry is within the MPSA No. 106-98-1 with total area of 630 hectares. Under ECC Ref. No. 9909-106-105, NCC was allowed to quarry 163 hectares within the MPSA with daily production capacity of 8,500 MT and 2,100 MT for limestone and shale, respectively.
- ⁹⁸ The NCC plans to increase the limestone and shale production capacity of its quarry operation to supply the additional raw material requirements of the Line 1 and Line 2. NCC will also supply the limestone and shale requirements of the SMNCI Line A and Line B cement facility and the limestone requirement of the SMC Global Power. With this, the new annual extraction rate for the limestone and shale are 8.27 MMTPY and 1.83 MMTPY, respectively.

	IdDI	e 1-19. NCC Limesic	ne and Shale Quarr	y Production							
Mineral	Available	Extraction Rate (MMTPY)									
Requirement	Mineral	NCC Line 1	SMNCI Line A	SMC Global	Total						
	Reserve	and Line 2	and Line B	Power							
Limestone	720.2	2.49	5.42	0.37	8.27						
	MMT										
Shale	30.19	0.57	1.26	-	1.83						
	MMT										

Table 1-19: NCC Limestone and Shale Quarry Production

- A mineral resource assessment was conducted within the MPSA of NCC last August 2019. A copy of the report is attached as **Annex 7.**
- ¹⁰⁰ The available limestone resources within the MPSA based on the assessment is 720,200,000 metric tons. With this, it can supply the annual limestone requirement of 8.27 MMTPY for ~88 years.
- ¹⁰¹ For the shale, the available resources within the MPSA is 30,190,000 metric tons. The estimated mine life for the shale quarry is ~16.5 years.

1.8 Development Plan, Description of Project Phases and Corresponding Timeframes

1.8.1 Pre-Construction

¹⁰² The pre-construction includes geotechnical investigation, feasibility study preparation, detailed engineering design and permitting. As previously discussed, **NCC** is applying for the amendment of ECC 9207-032-301C.

1.8.2 Construction Phase

¹⁰³ During this phase, additional equipment will be purchased and assembled on site. Proper occupational safety and health procedures would be implemented to ensure the welfare of the workers. As the facility upgrade would proceed along with the operation of the existing facilities for a certain period, additional guidelines on work delineation and management would be implemented to avoid any delays and conflicts of both activities.

1.8.3 Operations

- ¹⁰⁴ Major activity of the plant will involve 24/7 operation of the clinker & cement production and of quarrying of raw materials. Skilled workers will be employed. The same strict observation of occupational health and safety during construction would be followed.
- ¹⁰⁵ **Table** 1-20 shows the indicative timeline of the expansion project of NCC. The target commercial operation of Line 1 and Line 2 with the new production capacity is on 4th quarter of 2020. This is the same for the quarry expansion.

1.8.4 Abandonment

Post-construction Decommissioning

- ¹⁰⁶ After the construction, the project site will be thoroughly cleaned as preparation for the operation. All the temporary facilities installed in the project site will be properly dismantled and removed including the equipment brought in the project site. Heavy equipment will be removed at the site during nighttime so that it will not affect the traffic in the project site. It will be ensured that there will be no oil spills during the decommissioning of the equipment.
- ¹⁰⁷ All the wastes generated will be properly disposed or recycled. Construction debris and domestic wastes will be segregated, and all residual wastes will be hauled out by the Municipal waste collectors. All hazardous wastes will also be collected by DENR-registered haulers. Human wastes from the portable toilets will be properly siphoned by DENR-register desludgers. No wastes will be left in the project site.

Project Decommissioning

¹⁰⁸ The abandonment scenarios being planned for are (a) scheduled closure; (b) temporary closure; and (c) sudden closure. If the cement plant operations shall cease, all plant equipment and

machineries will be disassembled and hauled out and disposed of accordingly by the owners, as these are economic assets. All scrap materials will be re-used or sold to recyclers.

- ¹⁰⁹ At the end of project economic life, in the transition period for other land uses, the plant decommissioning and abandonment plan will aim to meet the following criteria:
 - Facilities such as Powerhouse, Water Treatment Plant, QA Lab & CCR building, Preheater building, Spray Tower and Baghouses, Storages, Warehouses, Concrete & Steel Silos, Packing Plant, conveying system facilities, Scale houses, Crushing, Milling & Pyro-processing equipment and auxiliaries are safely and carefully dismantled. Reusable or recoverable materials will be segregated through an accredited third-party material recovery group.
 - The area will be cordoned off for public safety;
 - Land and facilities are rendered free of chemical contamination and physical hazards;
 - Air, water and soil quality in the project environment shall conform to DENR standard;
 - Land slopes are stable against erosion-prone;
 - No flooding or unplanned water impounding persist in the project site;
 - The area does not cause flooding or excessive sedimentation of downstream locations;
 - All wastes have been hauled out and properly disposed;
 - The area presents a pleasant and aesthetic visual impression;
 - Rehabilitation of the mined-out areas.

Table 1-20: Indicative Timeline of Activities

	DESCRIPTION OF		2019 2020											2021																				
п	WORKS	JAN	B	MAR	APR	MAY					NOV	DEC	JAN	MAR	APR	MAY	JUV	JUL	AUG	SEP	<mark>0</mark>	Nov	DEC	JAN	E	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1.0	Homo silo upgrading and rehabilition of old internal parts and blowers																																	
2.0	Replacement of old burner pipe to low-nox german FLSmidth burner pipe																																	
3.0	Uppgrading of water sprayong of GCT using highly efficiency autojet gas cooling system																																	
4.0	Upgrading and modification of preheater with feed points for alternative fuel and raw materials (AFR).																																	
5.0	Introduction of alternative fuel and raw material for cement manufacturing																																	
	LEGEND																																	
Engineering and procurement																																		
Construction and installation works																																		
				Te	esti	ng	an	d c	on	nmi	sio	nir	۱g																					
				o	per	atio	ona	u I																										

1.9 Manpower

Table 1-21 summarizes the manpower requirements throughout the development phases of the proposed project. As shown, around 86 workers will be employed for the expansion of the NCC Line 1 and Line 2. A total of 306 NCC workers and about 2,143 contractors are expected for the operation of the NCC Line 1 and Line 2 and quarry.

		Table 1-21: Manpower Requirement	
PROJECT PHASE	ESTIMATED MANPOWER REQUIREMENTS	TASKS TO BE PERFORMED	SKILLS REQUIREMENTS
Construction	86	Civil works, architectural, and electro-mechanical works	 Engineers, project managers, skilled and non-skilled laborers
Operation	NCC: 306 Contractors: 2,143	 Oversee the entire operations of the proposed project, including emergency situations; Ensuring the safety and welfare of its personnel Maintain conformity of the proposed project to relevant government regulations, including tax payments, ECC compliance, etc. Promote and uphold a harmonious relationship with the host community 	 Management and administration skills; over-all knowledge on the operation including key environmental, labor, and local ordinances
Abandonment	~20	Implement the abandonment plan	As required

Tabla	1 21.	Man		Dee		
Table	1-21:	wan	power	Req	uiren	ient

¹¹¹ **Northern Cement Corporation, Inc.** will prefer hiring of locals whose skills and experience match the specific needs of the project. The proponent will also provide the necessary training of locals for possible hiring as the need arises.

1.10 Project Cost

- ¹¹² Indicative cost for the proposed project is estimated to be **Php ~3.5 Billion**. These will include the following:
 - Detailed engineering studies and designs, including the feasibility study (FS) and acquisition of necessary government permits and licenses;
 - Site preparation;
 - Construction of project components and facilities;
 - Procurement of necessary equipment and materials;
 - Environmental management and protection, air pollution devices, and water treatment facilities; and
 - Environmental monitoring activities

SECTION 2

ASSESSMENT OF ENVIRONMENTAL IMPACTS

2.1 The Land

¹¹³ This section presents the current baseline conditions of the project site to provide an overview of the existing environment. The key impacts are presented in relation to the current conditions.

2.1.1 Land Use and Classification

- ¹¹⁴ As indicated in **Section 1.1**, the proposed project site lies within the political jurisdiction of Brgy. Labayug and the Municipal Government of Sison in the Province of Pangasinan in Region 1 (ILOCOS REGION). The respective land area of region, province, municipality, and barangay that cover the proposed project site are presented in **Table** 2-1.
- ¹¹⁵ The Municipality of Sison is classified as 3rd class municipality. It is divided into 28 barangays, as shown in **Figure** 2-1. It is bounded by the Municipality of Tuba (Benguet Province) on the east, by the Municipality of Rosario (La Union Province) on the north and the Municipalities of Pozzorubio and San Fabian (Pangasinan Province) on the south and west respectively.

JURISDICTION	LAND AREA (HAS.)
Region 1 (ILOCOS REGION)	1,296,462
Province of Pangasinan	545,059
Municipality of Sison	13,788
Barangay Labayug	330

Table 2-1: Land Area of Region 1, Province of Pangasinan, Sison, and Brgy. Labayug

Sources: Philippine Statistics Authority 2015

¹¹⁶ Half (6,936 hectares) of the land in the Municipality of Sison is classified as agricultural area. The agricultural lands are mainly found along the lowlands at the eastern and middle portions of the municipality. About 37.49% of the land on the municipality is used as forest areas. Only 3.1% is being used as built-up area. The distribution of land use in the Municipality of Sison is shown in **Table** 2-2 while the general land use map is shown in **Figure** 2-2.

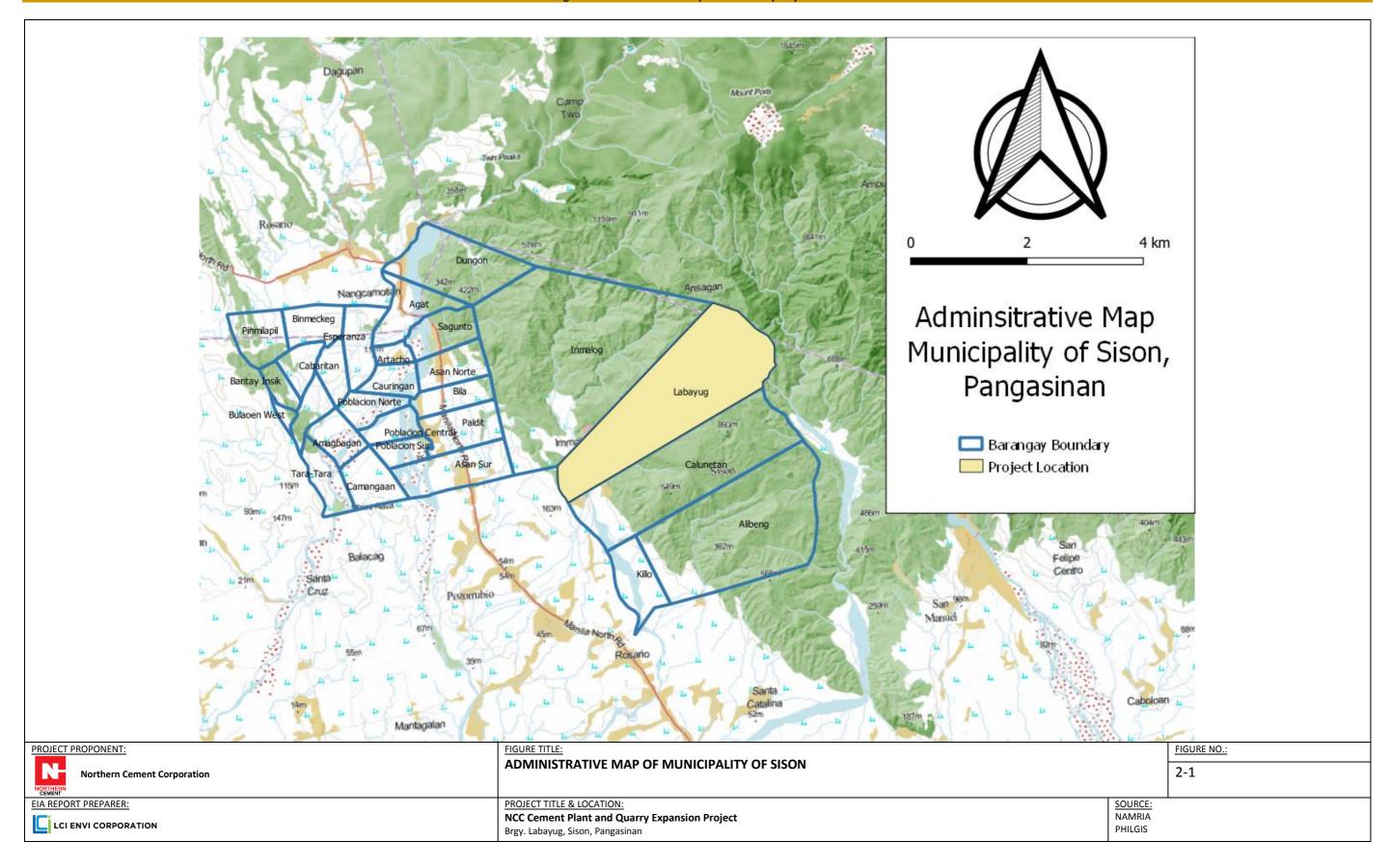
Table 2-2: Land Use Distribution, Munic	ipality of Sison
Tuble E E: Eana OSC Distribution, manie	apancy or bison

Land Use	Area (hectares)	% Total
Built–up Area	427.21	3.1
Residential	246.00	1.78
Commercial	28.00	2.20
Institutional	35.00	0.25
Industrial	98.00	0.71
Parks & Playground	0.65	0
Special Uses	19.56	0.13
Cemetery	7.73	0.06
Tourism	10.83	0.08
Dumpsite/Landfill	1.00	0.01
Agricultural	6,936.82	50.31
Sand dunes/Quarry Pit	219.00	1.59
Pastureland/ Grassland	204.00	1.48
Forest	5,168.97	37.49
Roads	118.76	0.81
Rivers/Creeks/Easement	713.24	5.22
Total	13,788.00	100.00

2.1.1.1 Impact in terms of compatibility with existing land use

¹¹⁷ As shown in **Figure** 2-2, the area where the NCC Line 1 and Line 2 cement plant is located is classified as industrial area. However, parts of the MPSA is still categorized as agricultural and forest areas. The CLUP of the Municipality of Sison is being updated and the MPSA will be reclassified as mining/quarry area.

2.1.1.2 Impact on compatibility with classification as an Environmentally Critical Area (ECA)


¹¹⁸ The proposed project site does not fall within any declared environmentally critical area (ECA), defined in the DENR Administrative Order No. (DAO) 2017-15 as "an area that is environmentally sensitive and is so listed under Presidential Proclamation No. 2146, Series of 1981, as well as other areas which the President of the Philippines may proclaim as environmentally critical in accordance with Section 4 of Presidential Decree No. 1586."

2.1.1.3 Impact in existing land tenure issue/s

¹¹⁹ The proposed project site is not covered by the Comprehensive Agrarian Reform Program (CARP). It is also not subject to a Certificate of Ancestral Domain Claim (CADC), Certificate of Ancestral Domain Title (CADT), Certificate of Ancestral Land Claim (CALC), Certificate of Ancestral Land Title (CALT), Integrated Forest Management Agreement (IFMA), Community-Based Forest Management Agreement (CBFMA), or any other tenurial instrument.

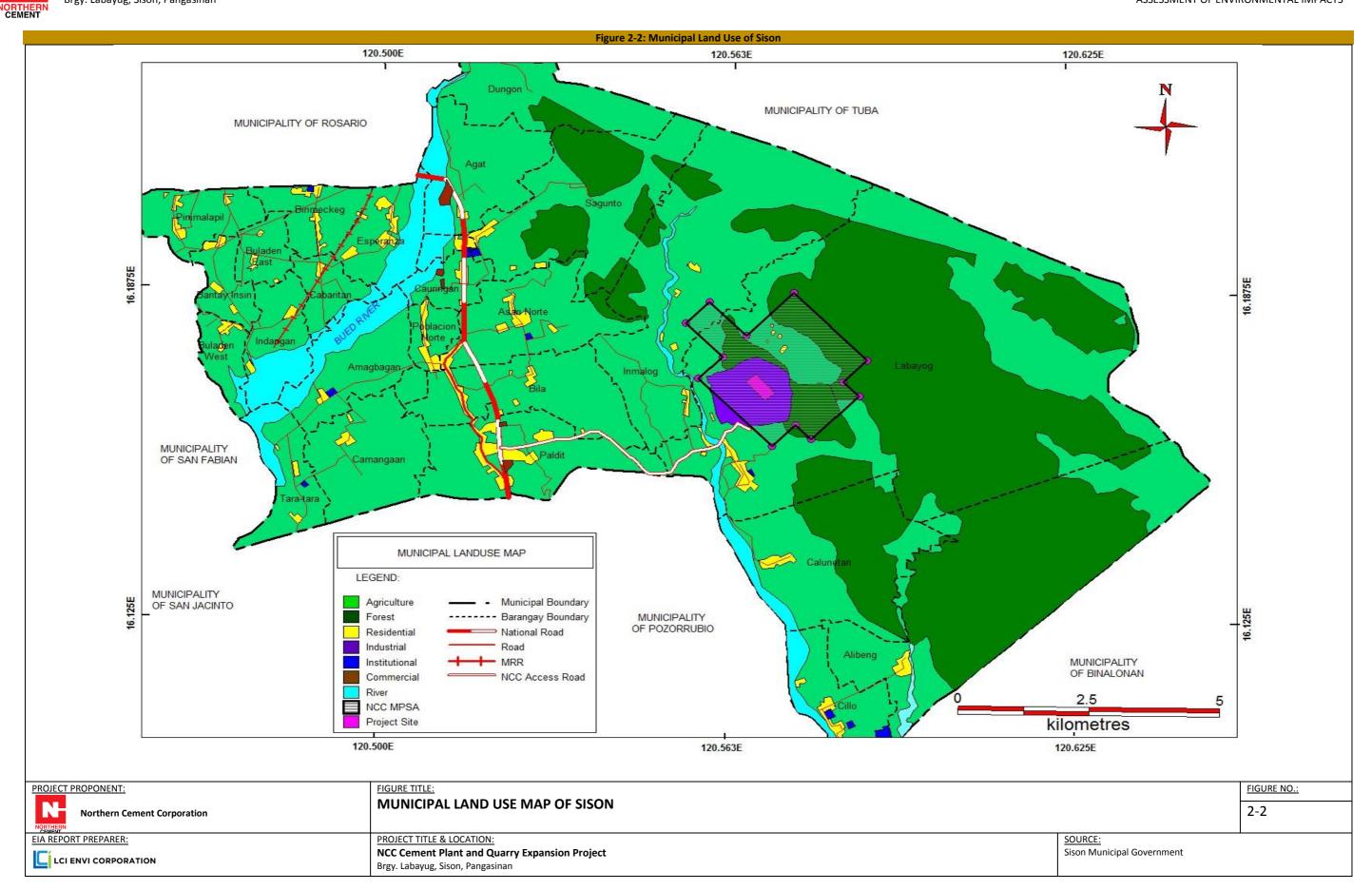


Figure 2-1: Administrative Map of the Municipality of Sison

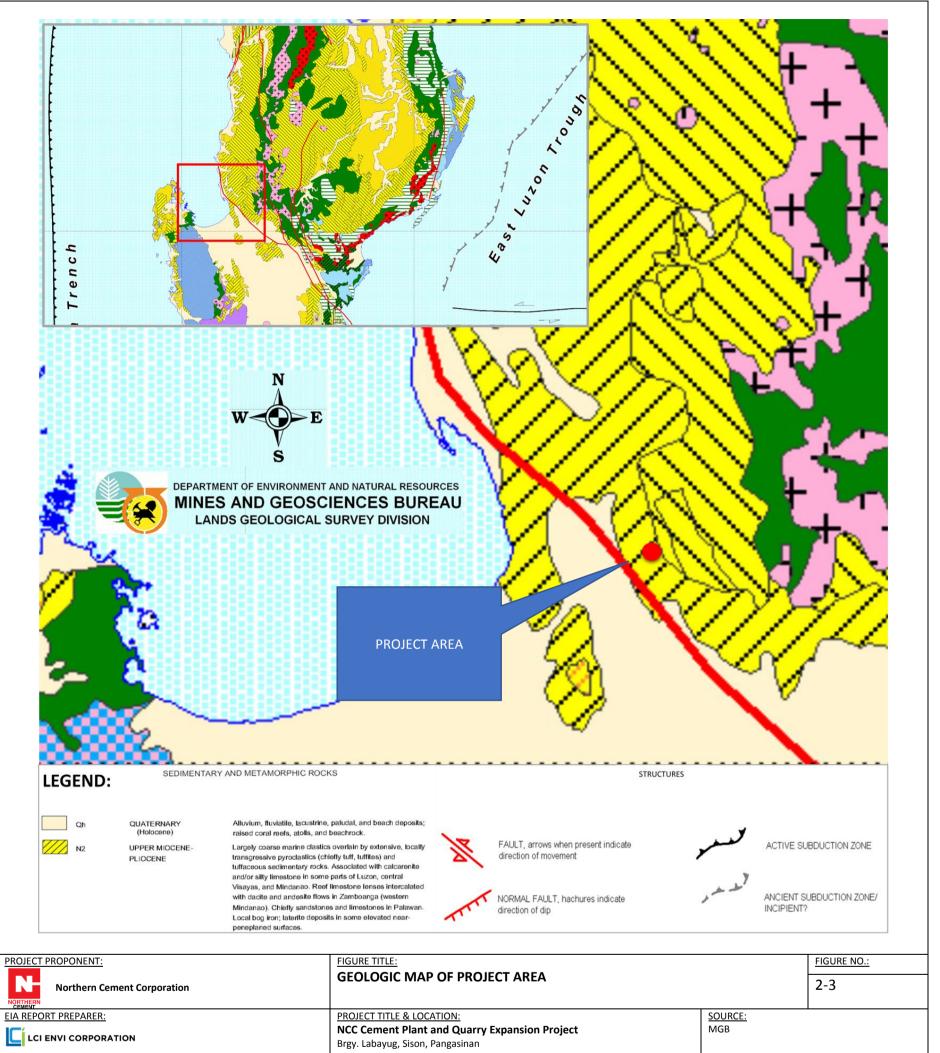
Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

2.1.1.4 Impairment of Visual Aesthetics

¹²⁰ The slopes and landscape in the quarry areas are expected to be modified during the operation due to the extraction of soil. This modification will create an unaesthetic view of the natural surroundings. Considerations are made in the proposed project design to preserve and enhance the visual aesthetics in the project area.

2.1.1.5 Devaluation of Land Value as a Result of Improper Waste Disposal


- ¹²¹ Solid waste generation will be limited to construction debris during the construction phase and domestic wastes during the operational phase. Mine wastes are also being generated in the quarry operation. Improper management of solid wastes may cause land pollution in the project site.
- ¹²² As a mitigation measure, a Solid Waste Management Plan is being strictly implemented by the NCC based on the local disposal regulations and consistent with the Ecological Solid Waste Management Act of 2000 (Republic Act 9003). The SWMP of NCC is discussed in Section 3 (Environmental Management Plan) of this document. NCC will continue coordinating with the local government for the regular collection and disposal of the solid wastes. NCC is using the mine wastes for backfilling.

2.1.2 Geology/Geomorphology

- ¹²³ Based from the Geology of the Philippines (2nd ed.) of the Mines and Geosciences Bureau (MGB), Ilocos Region belongs to Stratigraphic Grouping 1 (SG 1), the Ilocos-Central Luzon Basin. The stratigraphy of the Ilocos-Central Luzon Basin is subdivided into Ilocos, Central Luzon Basin- West Side and Central Luzon Basin- East Side. The Ilocos-Central Luzon Basin is structurally controlled by main branches of the northern segment of the Philippine Fault, notably the Vigan-Aggao Fault.
- ¹²⁴ Sison belongs to the west side of the Central Luzon Basin and is underlain by three major formations; Amalang Formation, Klondyke Formation and Cataguintingan Formation.
- ¹²⁵ Amalang Formation consists of turbiditic sandstones and shale with minor conglomerate. In terms of stratigraphic relations, Amalang Formation overlies the Klondyke Formation and is under the Cataguintingan Formation. Underlying also the Amalang Formation is the Labayug Limestone
- ¹²⁶ Underlying the NCC's cement plant and quarry is Labayug Limestone. Its contact with the overlying Amlang Formation at Sapid Creek is gradational. The geologic map covering the Municipality of Sison is shown in **Figure** 2-3.
- ¹²⁷ The main limestone quarry area has a maximum elevation of 480 meters above sea level while the shale quarry area has an average elevation of 218 meters above sea level. The elevation where the NCC Line 1 and Line 2 cement plant is located is about 200 meters above sea level. The topographic map of the project area is shown in **Figure** 2-4.
- ¹²⁸ The area where the NCC cement plant is located has a slope of 30-50% while some parts of the quarry area has slope of more than 50%, as shown in **Figure 2-5.**

Figure 2-3: Geologic Map of Project Area

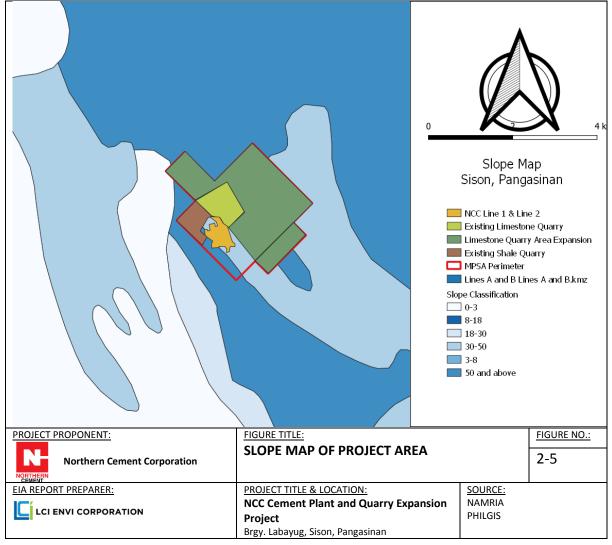


	Figure 2-4: Topographic Map of Project Area	
400 400 400 400 400 300 400	400	500 600 900
	700	800
200	500	500 700
200		600
200 200 200 200	300 900	500
90 90		400
100 200/200 200	2200	300
90 80 2	600 800	800 800 200
80 80 70 80 70 70 90	600 800	100
80 70 90 90	200 70	90
70		
		70
	500	sing 60
60	500 500	
Google Earth	400 500'	00 00 00 00 00 00 00 00 00 00 00 00
PROJECT PROPONENT:	FIGURE TITLE:	FIGURE NO.:
Northern Cement Corporation	TOPOGRAPHIC MAP OF PROJECT AREA	2-4
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION:	SOURCE:
	NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	LCI ENVI CORPORATION

3 4. T

Figure 2-5: Slope Map of the Project Area

Earthquakes

- ¹²⁹ There are three fault lines near the location of the NCC Line 1 and Line 2 cement plant. The closest is the San Miguel Fault, located at the west of the cement plant and passes through the MPSA. Located approximately 10 kilometers north-west of the cement plant is the Pugo Fault while approximately 7 kilometers north-east of the cement plant is the Mirador Fault.
- ¹³⁰ Based from the Earthquake-induced Landslide Susceptibility Map of Region 1, the project is prone to PEIS VII and PEIS VII earthquake which are characterized to be destructive to very destructive in terms of intensity. The project site has also medium to high susceptibility in terms of earthquake-induced landslide.

Liquefaction

- ¹³¹ The typical soil that is susceptible to liquefaction is loose sand located near the surface and with shallow groundwater table. During an earthquake, ground shaking causes loosely consolidated sand deposits to contract resulting to increase in pore water pressure and reduced grain to grain effective stress (Seed, 1970). This causes loss of soil bearing capacity and makes the soil behave like fluid. In the process, there is an upward flow of water to the ground surface where it emerges in the form of mud spouts or sand boils. Liquefaction is usually accompanied by differential settlement and lateral spreading because of withdrawal of materials beneath the ground surface. Areas where liquefaction is likely to occur include riverbeds, old or abandoned river beds and meanders, swamps and back swamps. Alluvial plains, pyroclastic plains and coastal plains with shallow groundwater and with silty to sandy soils are also possible sites for liquefaction.
- ¹³² As shown in **Figure 2-8**, the cement plant and the quarry areas are not susceptible to liquefaction.

Landslide

- ¹³³ Landslide is the general term for readily perceptible mass movements, slow or rapid. It includes, rockslide, rock fall, mudflow, slump, debris avalanche and many others. Areas with high risk to landslide are those with steep slopes, high precipitation, highly fractured rocks (sheared zone), scarce vegetation and location close to active faults.
- ¹³⁴ Based from the Landslide Susceptibility Map of the Labayug Quadrangle shown in **Figure** 2-9, the project site has high to moderate susceptibility to landslide.

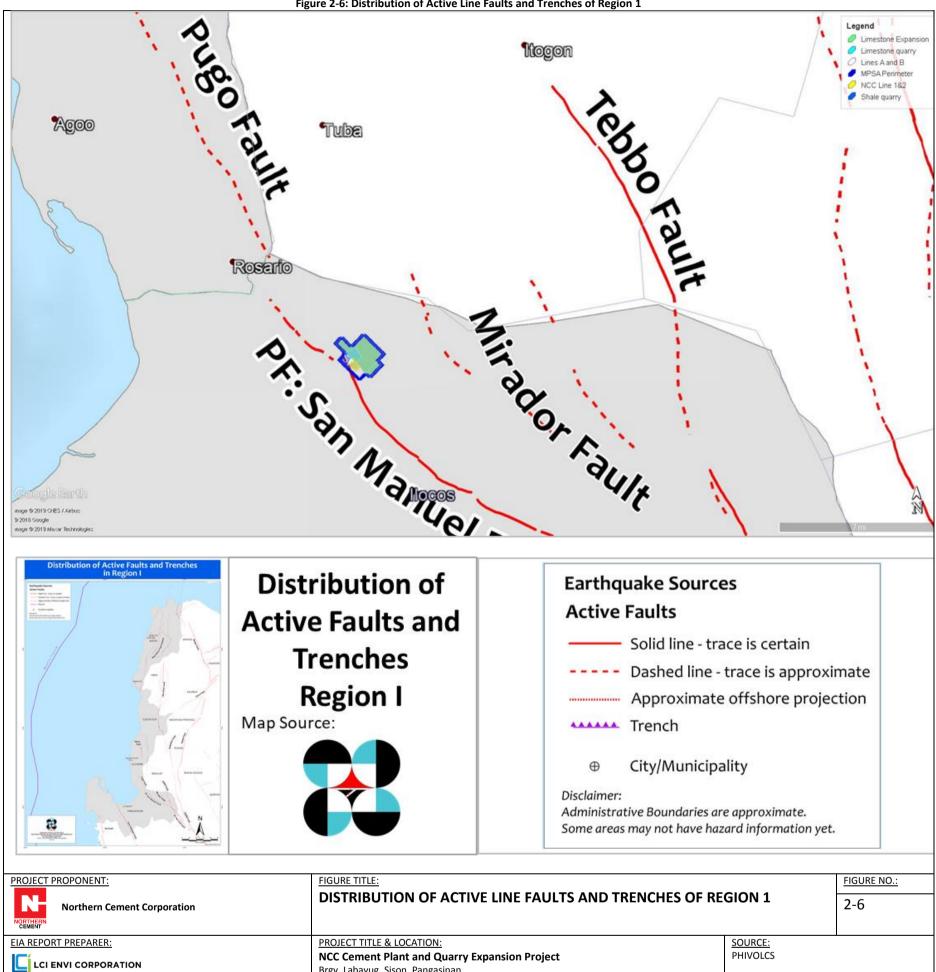
Flooding

- ¹³⁵ Flooding in the country is often caused by prolonged rain. As such, majority of the flood occurrences are then associated with tropical cyclones or monsoon rains. In addition to this, anthropogenic activities such as accumulation of improperly disposed solid wastes, poor flood dynamics in public facilities and infrastructures, illegal or extreme logging without reforestation and inadequate preparedness for natural calamities may also cause or even worsen flooding events.
- ¹³⁶ The project site is not located in a flood-prone area however, some parts of Brgy. Labayug, located at the south-west of the project site, has moderate to high susceptibility to flood.

Volcanic Events

¹³⁷ Another geologic hazard is from volcanic events. The Philippine has about 220 volcanoes (PHIVOLCS). Of these, 22 have been recorded in history to have erupted, and five are considered to be the most active namely: Taal, Mayon, Bulusan, Canlaon and Hibok-Hibok. Volcanic hazards from volcanic activity and eruption include lava flow, debris flow, pyroclastic flow, debris avalanche, lahar, bombs and ballistics projectiles, ash fall, volcanic gases emission, flooding and

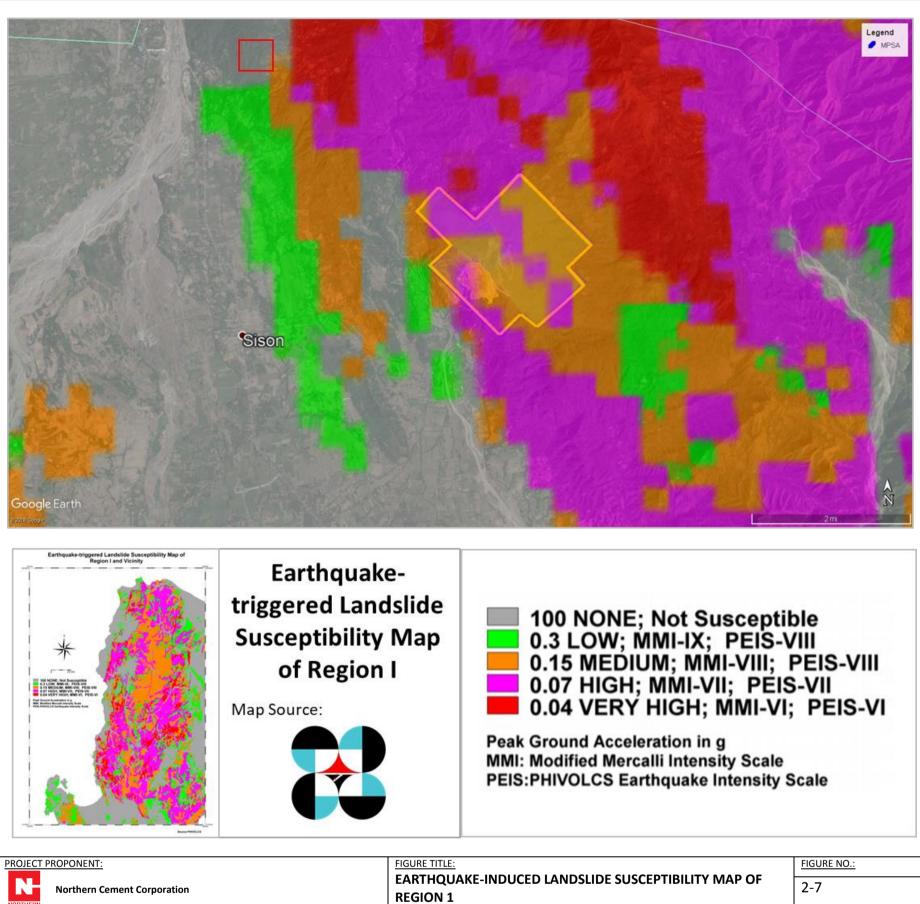
volcanic quakes. This may cause health problems since ash fall may contaminate water sources and also cause respiratory illnesses.


¹³⁸ As shown in **Figure** 2-10, there are no active volcanoes near the project site.

<u>Tsunami</u>

- ¹³⁹ Tsunamis occur when a large volume of water is displaced due to a seismic activity, volcanic eruption or other large water explosion or collision. This materializes as a series of tidal waves, which may occur for extended periods of time, with longer wavelengths.
- ¹⁴⁰ Based from the Tsunami Hazard Map of Pangasinan (**Figure** 2-11), the project site is not prone to tsunami.

Brgy. Labayug, Sison, Pangasinan



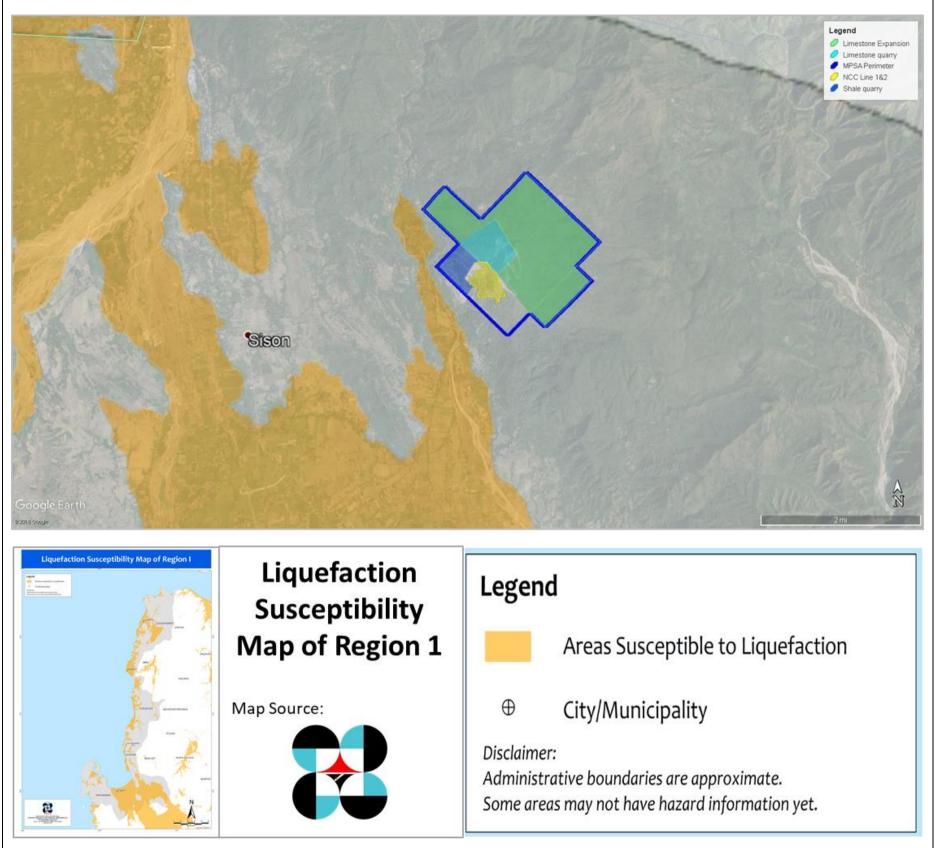
SOURCE:

PHIVOLCS

PROJECT TITLE & LOCATION:

Brgy. Labayug, Sison, Pangasinan

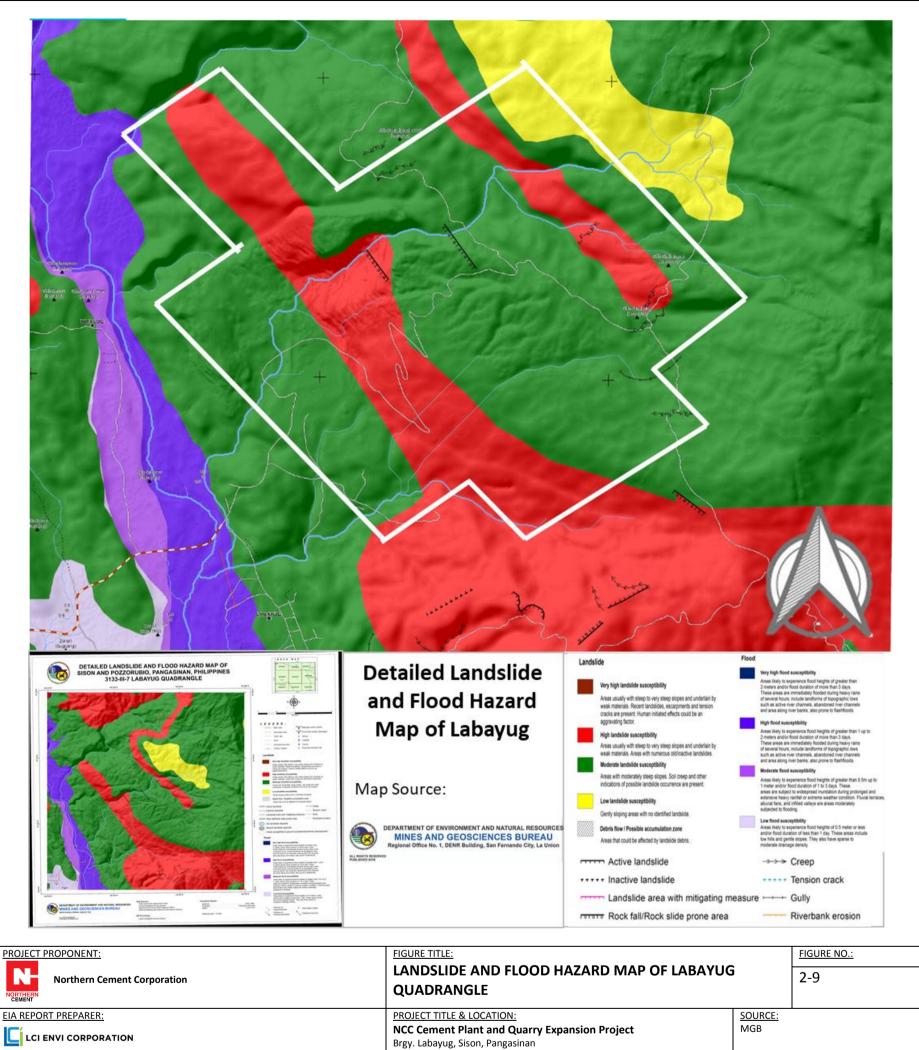
NCC Cement Plant and Quarry Expansion Project



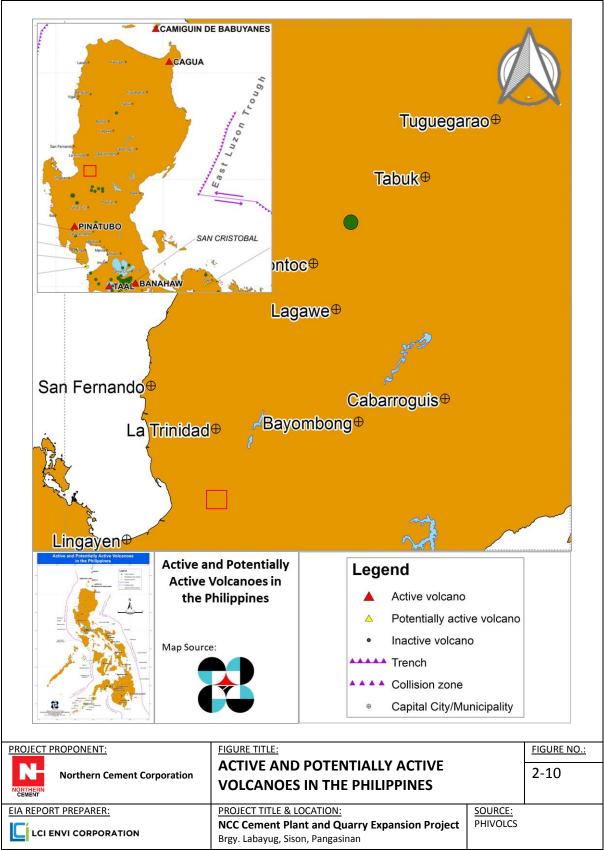
EIA REPORT PREPARER:

LCI ENVI CORPORATION

Figure 2-8: Liquefaction Hazard Map of Pangasinan



PROJECT PROPONENT:	FIGURE TITLE:		FIGURE NO.:
Northern Cement Corporation	LIQUEFACTION HAZARD OF PANGASINAN		2-8
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	<u>SOURCE:</u> PHIVOLCS	



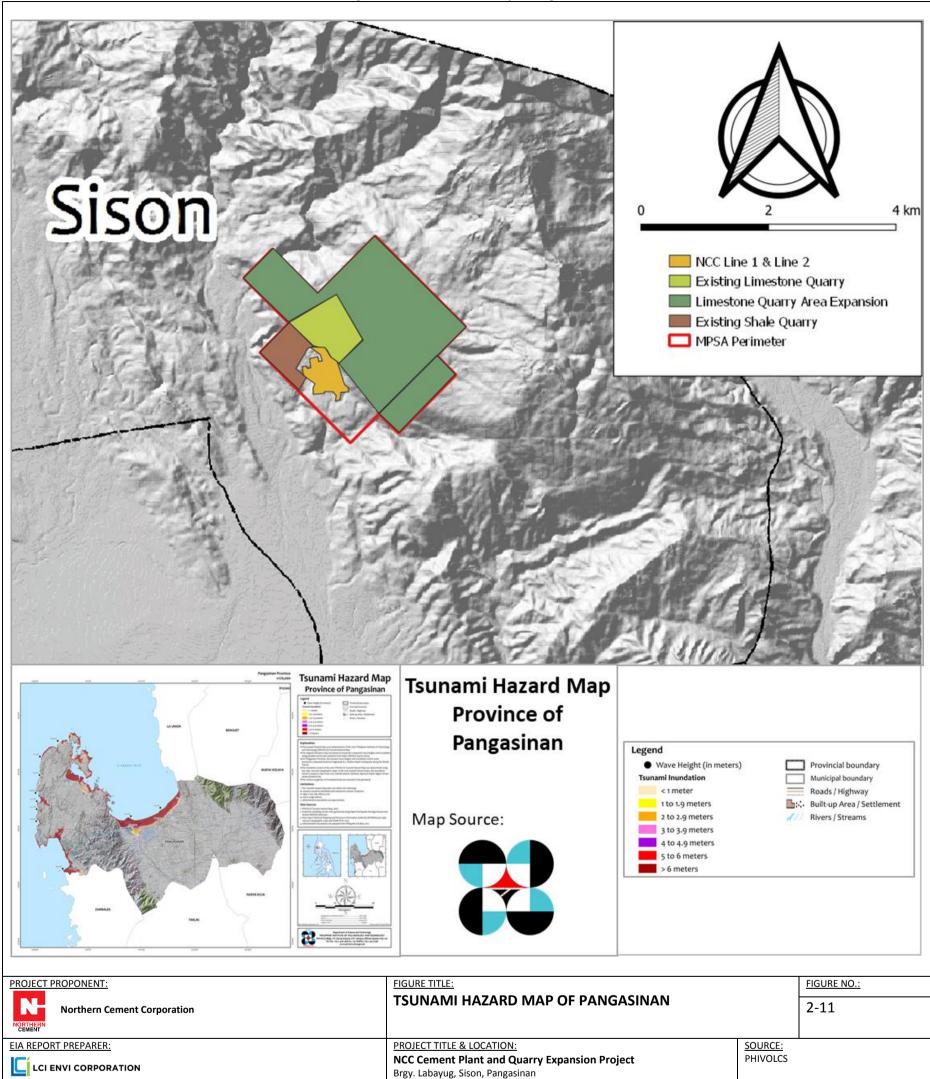


Figure 2-10: Active and Potentially Active Volcanoes in the Philippines

Figure 2-11: Tsunami Hazard Map of Pangasinan

2.1.2.1 Change in surface landform/geomorphology/topography/terrain/slope

- ¹⁴¹ NCC's quarry operation, like any kind of facilities with mining and ore extraction activities, will create a direct impact on the land, specifically the gross modification and alteration of natural slope.
- ¹⁴² The company maintains the bench slopes at 60-70 degrees and an overall quarry slope of 45 degrees to minimize this concern. Moreover, bench slopes are monitored for potential failures. Corresponding engineering interventions such as moderation of angle or bank refurbishment are currently implemented.

2.1.2.2 Change in subsurface geology/underground conditions

¹⁴³ The proposed project is not expected to cause any change in sub-surface geology or underground conditions in the impact area.

2.1.2.3 Inducement of subsidence, liquefaction, landslides, mud, debris flow, etc.

¹⁴⁴ There might be some concerns on the susceptibility of the quarry sites of the Plant to mass wasting or sudden earth movements. The company currently employs safety guidelines and proper mining procedures to minimize the occurrence of erosions near the quarry area.

2.1.3 Pedology / Soil


¹⁴⁵ The soil map in the project area is shown in **Figure** 2-12. As shown in the map, the project is underlain by Annam Clay Loam and Umingan Silt Loam. The Annam Clay Loam soil type is characterized as very severely to excessively eroded or shallow for cultivation and suited to pasture or forest with carefree management. On the other hand, the surface soil of Umingan Silt Loam is brown sandy loam and friable. The texture of this layer becomes finer as its depth increases. The substratum is yellowish brown silty clay loam.

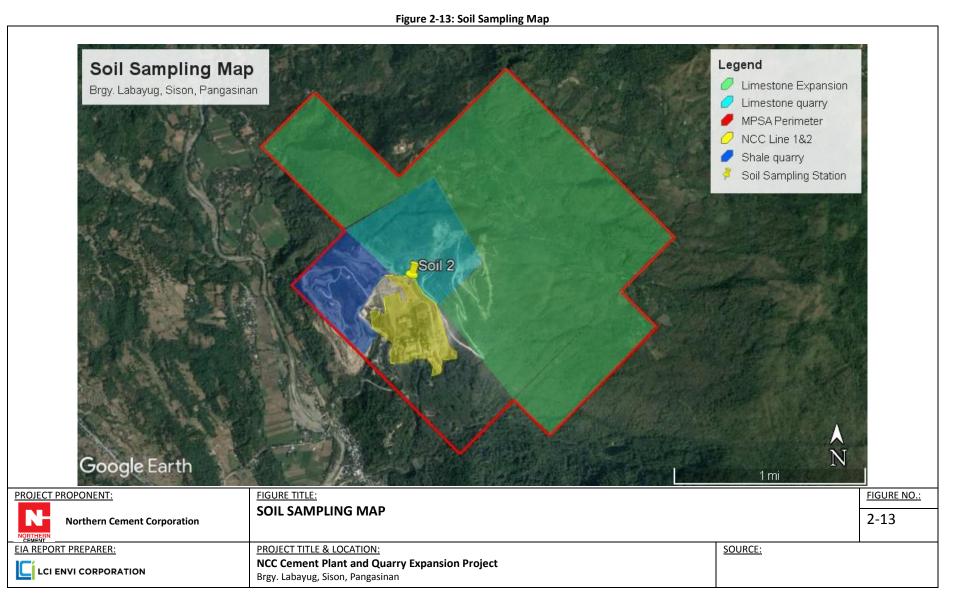
2.1.3.1 Soil erosion/Loss of topsoil/overburden

- ¹⁴⁶ Landslides and erosions are caused by the sudden movement of soils within a slope of a hill or mountain. For the Project area, this is caused primarily by the excavation or earth movement in the quarry sites. The removal of trees and soil-binders can increase this problem. During heavy rains or strong winds, landslides and erosions can be triggered, thus putting significant threats to the low-lying communities.
- ¹⁴⁷ However, erosion can be greatly minimized constructing erosion barriers, silt traps, etc. The exact location of the silt traps will depend on the strategy of the contractor on land clearing and the existing drainage. If the existing drainage will be used, a silt trap or siltation pond will be installed before discharge to nearby river.
- ¹⁴⁸ Also, as part of their Environmental Protection and Enhancement Program (EPEP), NCC implements progressive rehabilitation which entails backfilling and planting in mined-out areas.

Figure 2-12: Soil Map

2.1.3.2 Change in Soil Quality/Fertility

- ¹⁴⁹ To determine the organic properties of the soil within the project site, a soil sample was collected last June 16, 2017 and September 28, 2018. The soil sample was analyzed for its organic compounds in terms of total phosphorus, total nitrogen, potassium, oil and grease and pH and heavy metals. The summary of results of the laboratory analysis is shown in **Table** 2-3.
- ¹⁵⁰ Since there are no established soil quality standards in the Philippines, the results were compared with the soil remediation intervention values specified in Annex 1 (Table 1) of the Dutch Soil Remediation Circular 2013 (version of 1 July 2013). The results show that the soil quality in the area is below the prescribed limits.


		Table 2-3: Soil Analysis R	esults
PARAMETER	UNIT	DETECTED LEVEL AT	Dutch Intervention Value
		THE SAMPLING POINTS	
		BASED ON	
		LABORATORY	
		ANALYSIS	
		Soil 1	Dutch Soil Remediation Circular 2013
Total Nitrogen	mg/kg	274	-
Total Phosphorus	mg/kg	639	-

PARAMETER	UNIT	DETECTED LEVEL AT THE SAMPLING POINTS BASED ON LABORATORY ANALYSIS Soil 1	Dutch Intervention Value Dutch Soil Remediation Circular 2013
Potassium	mg/kg	856	-
Oil and Grease	mg/kg	532	-
рН		7.4	-
Antimony	mg/kg	0.8	22
Arsenic	mg/kg	2.4	76
Cadmium	mg/kg	0.8	13
Lead	mg/kg	6.8	530
Thallium	mg/kg	8.0	15
Mercury	mg/kg	ND	-
Zinc	mg/kg	52	720
Potassium	mg/kg	2,170	-
Selenium	mg/kg	ND	100
NOTES: mg/kg = millig			

ND – Not Detected

2.1.4 Terrestrial Ecology

- ¹⁵¹ A terrestrial assessment was conducted in the project site last September 2-5, 2015. The objective of the assessment was to identify existing vegetation cover and prevailing wildlife species in the watershed of the proposed project. This is undertaken to assess the biodiversity composition of the area and link the possible impacts of the project to the watershed. In addition, the study will provide recommendation on the possible mitigating measures to minimize impact of the project to the remaining flora and fauna species.
- ¹⁵² In the terrestrial assessment, plots were established in these particular sites to examine the tree and plant species for vegetational analysis. For faunal dimension, the study is limited on the observed species during the field survey, claims of the local and collected species on the established plots and through netting.
- 153 The species conservation status and endemicity were also determined. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species 2016 and DENR-AO 2017-11 "Establishing the National List of Threatened Philippine Plant and Their Categories were employed in determining conservation status and endemicity of each species. This is to provide scientifically based information on the status of the species and subspecies at a global level; draw attention to the magnitude and importance of threatened biodiversity; influence national and international policy and decision-making; and provide information to guide actions to conserve biological diversity (Source: Convention on International Trade of Wild Flora and Fauna, Joint Meeting of the Animals and Plants Committee, Shepherds town, USA., December 2000, retrieved November 2012). The IUCN Red list is set upon precise criteria to evaluate the extinction of thousands of species and sub-species. The aim of the Red List is to convey the urgency of conservation issues to the public and policy-makers, as well as to help the international community to try to reduce species extinction. In addition, the DENR AO 2007-01 was also used pursuant to Section 22 of Republic Act 9147, otherwise known as the Wildlife Conservation and Protection Act of 2001. The following are the conservation categories and their description.
 - **Critically Endangered (CR)** A taxon is Critically Endangered when it is facing an extremely high risk of extinction in the wild in the immediate future.
 - Endangered (EN) A taxon is Endangered when it is not Critically Endangered but is facing a very high risk of extinction in the wild in the near future.
 - **Vulnerable (VU)** A taxon is Vulnerable when it is not Critically Endangered or Endangered but is facing a high risk of extinction in the wild in the medium-term future.
 - **Near threatened (NT)** Taxa which do not qualify for Conservation Dependent, but which are close to qualifying for Vulnerable.
 - Least Concern (LC) Taxa which do not qualify for Conservation Dependent or Near Threatened.
 - **Other Threatened Species (OTS)** refers to a species or subspecies that is not critically endangered, endangered nor vulnerable but is under threat from adverse factors, such as over collection, throughout its range and is likely to move to the vulnerable category in the near future.
 - Not Evaluated (NE) A taxon is Not Evaluated when it is has not yet been assessed against the criteria.

2.1.4.1 Terrestrial Flora

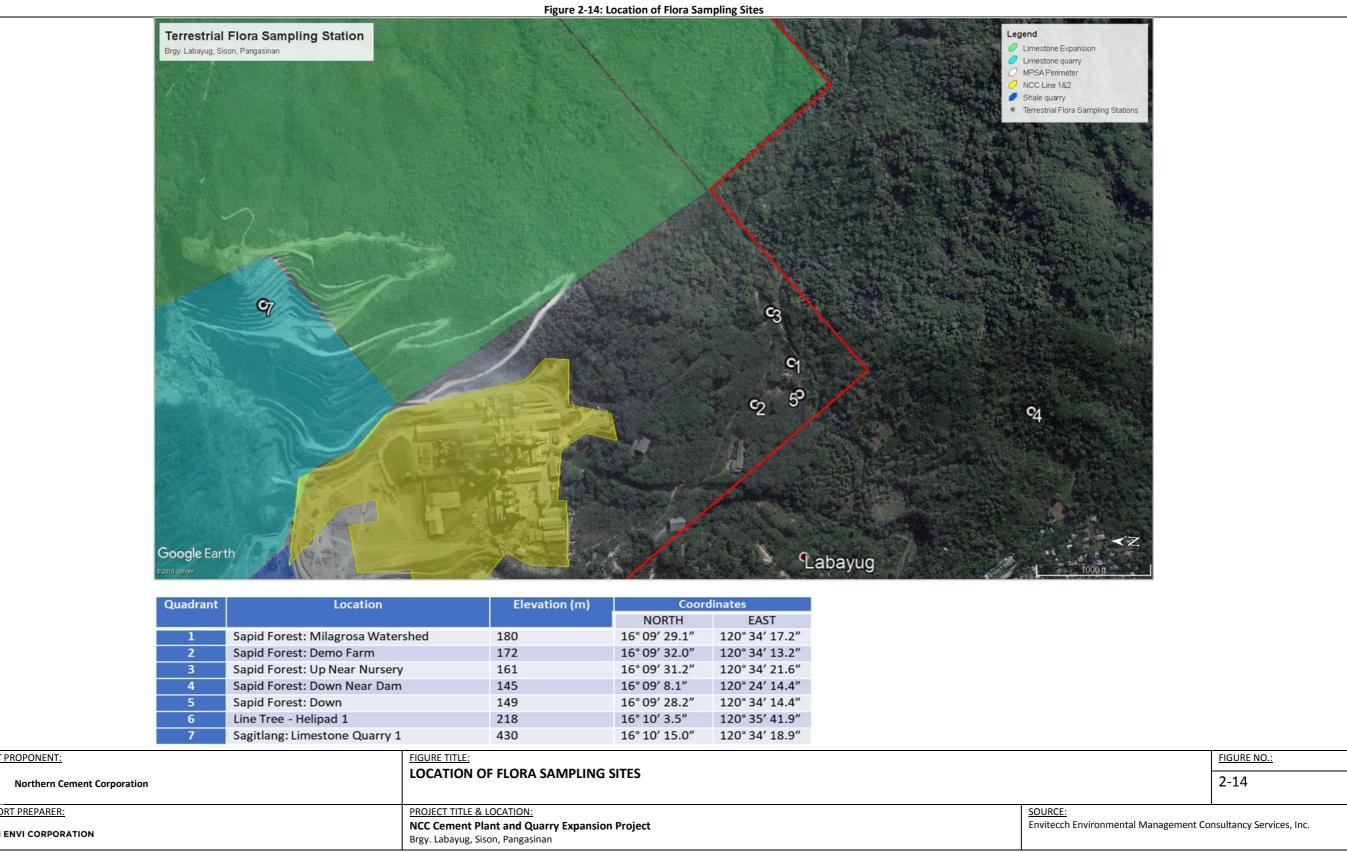
Methodology

- ¹⁵⁴ Quadrat sampling method was used during the assessment of the flora in the project site. Ten sampling plots were established in the Sapid Forest for the flora assessment to represent the vegetation cover of the project site. Plants were identified as well as patches of trees located within the project area. Other species of plants encountered outside the sampling plots were photo documented. The collected data were consolidated to form a species checklist indicating common name, scientific name and family name of the plants recorded.
- Random sampling using 20m x 20m square plots were established. Inside the 20m x 20m square plots, nested 5m x 5m and 1m x 1m subplots were also established using tape measure and plastic twine. In the 20m x 20m plots, all trees with dbh (1.3m from the ground) greater than 10 cm were enumerated and identified. The dbh, and height of each tree were measured for the computation and analysis of species richness, evenness and distribution. Frequencies of shrubs, poles and saplings inside the 5m x 5m quadrant were counted to account for the understorey species while percent coverage of grasses and other ground cover inside the 1m x 1m quadrat were also determined. Tree saplings and seedlings, vines, grass etc. were identified, tallied and recorded. Figure 2-14 shows map for the established sampling plots.
- ¹⁵⁶ The following formulas were used to compute the %IV.

$$Basal Area (m^{2}) = 0.7854 (\frac{DBH}{100})^{2} x 100$$

$$Relative Dominance (\%) = \frac{\sum Basal area of species (m^{2})}{Plot area (m^{2})} x 100$$

$$Density = \frac{No. of individuals of any species}{Area of samples}$$


$$Relative Density (\%) = \frac{Density of a species}{Total density of all species} x 100$$

$$Frequency = \frac{No. of plots in which species occur}{Total number of plots sampled}$$

$$Relative Frequency (\%) = \frac{Frequency of a species}{Total frequency of all species} x 100$$

Importance Value (%) = *Relative Dominance* + *Relative Density* + *Relatibe Frequency*

Quadrant	Location Elevation (m)		Coordinates		
			NORTH	EAST	
1	Sapid Forest: Milagrosa Watershed	180	16° 09' 29.1"	120° 34' 17.2"	
2	Sapid Forest: Demo Farm	172	16° 09' 32.0"	120° 34' 13.2"	
3	Sapid Forest: Up Near Nursery	161	16° 09' 31.2"	120° 34' 21.6"	
4	Sapid Forest: Down Near Dam	145	16° 09' 8.1"	120° 24' 14.4"	
5	Sapid Forest: Down	149	16° 09' 28.2"	120° 34' 14.4"	
6	Line Tree - Helipad 1	218	16° 10' 3.5"	120° 35' 41.9"	
7	Sagitlang: Limestone Quarry 1	430	16° 10' 15.0"	120° 34' 18.9"	

PROJECT PROPONENT:	FIGURE TITLE:	
Northern Cement Corporation	LOCATION OF FLORA SAMPLING SITES	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION:	SOURCE
	NCC Cement Plant and Quarry Expansion Project	Enviteccl
	Brgy. Labayug, Sison, Pangasinan	

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

Floristic Composition

¹⁵⁷ A total of 73 species were observed from the project area. Relative to the plant life-form, trees were the dominant group with 45 species (62%) while the remaining 18 species (38%) are composed of shrubs, palms, herbs, grasses and vines.

Importance Value (IV), Density (ρ), and Frequency (f)

- ¹⁵⁸ Importance value (IV) is the sum of relative density, relative frequency and relative dominance. A high importance value indicates that species is well represented in the stand because of some combination of a) a large number of individuals of species compared with other species in the stand, or b) a smaller number of individuals of species, but the trees are large compared with others in the stand.
- ¹⁵⁹ Ipil-ipil (Afzelia bijuga) has the highest computed IV of 19.27%, followed by rain tree (Samanea saman) with 17.34% IV, gmelina (Gmelina arborea) with 14.99% IV, aratiles (Muntingia calabura) with 12.98% IV and narra (Pterocarpus indicus) with 11.82% IV. Species with the highest %IV were considered to have the highest contribution/impact in the study area. Results of the computed %IV of the trees observed are shown in Table 2-4.
- ¹⁶⁰ Density is defined as a measurement of the individuals' number in an area. This is computed by counting the numbers of any given species over the area of the sample of the sample plot. It is the degree of compactness of a species. It can be used for the thickness description of a particular vegetation, extent regeneration and the extent of standing biomass or ground cover.
- ¹⁶¹ All the tree species observed have computed relative density of below 10%. Aratiles (Muntingia calabura) and bamboo (Bambusa blumeana) have the highest relative density of 6.55%.
- ¹⁶² Frequency (f) is defined as the number of times the species occurs in a given number of small quadrants or sample points. It is expressed as a fraction of the total relative frequency (RF). It does not matter how many individuals of species occur in each quadrant since a single occurrence carries the same weight.
- ¹⁶³ In the intermediate layer, kantutay (Lantana camara) has the highest relative frequency of 10% followed by ipil-ipil (Afzelia bijuga) with 9.35% RF and kakawate (Gliricidia sepium) with 7.19% RF. Table 2-5 presents the computed frequency of the species in the intermediate layer.
- ¹⁶⁴ Nine (9) species of grasses and vines were recorded. Mikania, Imperata cylindrica (cogon) and Saccharum sponaneum (talahib) are invasive weed species in disturbed areas and form dense monocultures over croplands and pasturelands. They possess also allelopathic effects on other plants. These characteristics enabled these weed species to have high relative cover especially in the open marginal areas of the survey area. Computed frequency in the ground cover is shown in Table 2-6.

SAN MIGUEL NORTHERN CEMENT, INC. SMNCI LINE A & B NEW CEMENT PRODUCTION PROJECT

Brgy. Labayug, Sison, Pangasinan

Table 2-4: Importance Value of the trees surveyed

Family Name	Scientific Name	Common Name	Abundance	Rf	Rρ	Rd	IV
Fabaceae	Acacia auricoliformis	Acacia	18	4.09222	3.92972	4.09268	12.1146
Leguminaceae	Bauhinia malabarica	Alibangbang	19	4.09222	4.14858	2.46914	10.7099
Moraceae	Streblus asper	Aludig/sandpaper tree	8	0.80692	1.74722	0.91324	3.46738
Arecaceae	Saribus rotundifolius	Anahaw	13	2.47839	2.83786	1.08236	6.39861
Dipterocarpaceae	Dipterocarpus grandiflorus	Apitong	1	0.40346	0.21886	0.54118	1.1635
Muntingiaceae	Muntingia calabura	Aratiles	30	3.68876	6.54994	2.73973	12.9784
Annonaceae	Annona squamosa	Atis	4	1.67147	0.873	2.43531	4.97978
Moraceae	Ficus benjamina	Balite	21	4.55331	4.58508	2.50296	11.6414
Poaceae	Bambusa blumeana	Bamboo	30	3.2853	6.54994	1.15001	10.9853
Phyllanthaceae	Antidesma bunius	Bignay	18	4.09222	3.92972	4.66768	12.6896
Arecaceae	Corypha elata Roxb.	Buri	6	1.67147	1.3095	1.58972	4.57069
Malvaceae	Theobroma cacao L.	Сасао	3	1.21037	0.65536	0.74412	2.60986
Rutaceae	Citrus microcarpa	Calamansi	4	1.67147	0.873	3.34855	5.89302
Anacardiaceae	Anacardium occidentale	Cashew	2	0.80692	0.4365	0.77795	2.02136
Rutaceae	Manilkara zapota	Chico	1	0.40346	0.21886	2.16472	2.78704
Rubiaceae	Coffea liberica	Coffee	2	0.80692	0.4365	0.7103	1.95372
Myrtaceae	Syzygium cumini	Duhat	8	2.47839	1.74722	2.30002	6.52562
Lamiaceae	Gmelina arborea	Gmelina	23	4.55331	5.02158	5.4118	14.9867
Myrtaceae	Psidium guajava	Guava	9	2.47839	1.96486	1.15001	5.59325
Annonaceae	annona muricata	Guyabano	4	1.67147	0.873	1.4206	3.96507
Fabaceae	Afzelia bijuga	Ipil – ipil	50	3.68876	10.9174	4.66768	19.2738
Artocarpaceae	Artocarpus heterophyllus	Jackfruit	5	1.67147	1.09186	1.38677	4.15011
Moraceae	Artocarpus altilis	Kamansi	13	3.2853	2.83786	1.58972	7.71288
Fabaceae	Parkia javanica (Lam.) Merr.	Kupang	13	3.68876	2.83786	4.87062	11.3972
Ebenaceae	Diospyros blancoi	Mabolo	3	1.21037	0.65536	3.28091	5.14664
Myrtaceae	Syzygium samarangense	Масора	1	0.80692	0.21886	0.7103	1.73608
Meliaceae	Toona calantas	Mahogany	29	4.95677	6.3323	2.87502	14.1641
Anacardiaceae	Mangifera indica	Mango	9	3.68876	1.96486	3.24708	8.9007

SAN MIGUEL NORTHERN CEMENT, INC. SMNCI LINE A & B NEW CEMENT PRODUCTION PROJECT

Brgy. Labayug, Sison, Pangasinan

Family Name	Scientific Name	Common Name	Abundance	Rf	Rρ	Rd	IV
LAMIACEAE	Vitex parviflora	Molave	3	1.21037	0.65536	2.16472	4.03046
Dipterocarpaceae	Pterocarpus indicus	Narra	16	4.55331	3.49322	3.77135	11.8179
Rutaceae	Citrus X sinensis	Orange	1	0.40346	0.21886	0	0.62232
Dipterocarpaceae	Shorea palosapis	Palosapis	3	1.21037	0.65536	0.40589	2.27162
Caricaceae	Carica papaya	Рарауа	11	2.07493	2.40136	1.4206	5.89689
Rutaceae	Citrus maxima	Pomelo	1	0.40346	0.21886	1.82648	2.4488
Fabaceae	Samanea saman	Raintree	27	4.55331	5.89458	6.90005	17.3479
Sapindaceae	Nephelium lappaceum	Rambutan	1	0.40346	0.21886	2.87502	3.49734
Dipterocarpaceae	Shorea negrosensis	Red lawaan	2	0.80692	0.4365	1.04854	2.29195
Meliaceae	Sandoricum koetjape	Santol	5	1.67147	1.09186	0	2.76333
Fabaceae	Biancaea sappan	Sappan	1	0.40346	0.21886	2.90884	3.53116
Sapotaceae	Chrysophyllum cainito	Star apple	8	2.47839	1.74722	1.89413	6.11974
Combretaceae	Terminalia catappa	Talisay	3	1.21037	0.65536	0.94707	2.8128
Fabaceae	Tamarindus indica	Tamarind	6	2.07493	1.3095	0.7103	4.09473
Lamiaceae	Tectona grandis	Teak	18	4.55331	3.92972	1.9956	10.4786
Dipterocarpaceae	Shorea contorta	White lawaan	1	0.40346	0.21886	3.04414	3.66646
Dipterocarpaceae	Shorea astylosa	Yakal	4	1.67147	0.873	3.24708	5.79155
		TOTAL	457	100	100	100	300

Table 2-5: Computed Frequency	y (f) in the Intermediate Layer
-------------------------------	---------------------------------

Scientific Name	Species Name	Common Name	f	Rf
Fabaceae	Acacia auricoliformis	Acacia	8	5.76%
Leguminaceae	Bauhinia malabarica	Alibangbang	8	5.76%
Moraceae	Streblus asper	Aludig	5	3.60%
Moraceae	Ficus benjamina	Balite	6	4.32%
Poaceae	Dracaena braunii	Chinese Bamboo	3	2.16%
Myrtaceae	Syzygium cumini	Duhat	7	5.04%
Lamiaceae	Gmelina arborea	Gmelina	9	6.47%
Poaceae	Phyllostachys aurea	Golden bamboo	5	3.60%
Asteraceae	Chromolaena odorata	Hagonoy	8	5.76%
Fabaceae	Afzelia bijuga	Ipil-Ipil	13	9.35%
Fabaceae	Gliricidia sepium	Kakawate	10	7.19%
Verbenaceae	Stachytarpeta jamaicensis	Kandikandilaan	7	5.04%
Verbenaceae	Lantana camara	Kantutay	14	10.07%
Poaceae	Bambusa blumeana	Kawayan Tinik	8	5.76%
Meliaceae	Toona calantas	Mahogany	7	5.04%
Anacardiaceae	Mangifera indica	Mango	9	6.47%
Myrtaceae	Syzygium polycephaloides	Panglumbuyen	2	1.44%
Caricaceae	Carica papaya	Рарауа	4	2.88%
Lamiaceae	Hyptis suaveolens	Suob Kabayo	6	4.32%

	Table 2-0. comput	ed Frequency in the Grou		
Family Name	Species	Common Name	Rf	Relative Cover
				(%)
Amaranthacea	Amaranthus spinosus	Uray	8.3	20
Fabaceae	Mimosa pudica	Makahiya	5.0	34
Poaceae	Eleusine indica	Paragis	10.7	18
Asteraceae	Mikania mikania		31.1	24
	Oxales sp.		2.5	18
Portulacaceae	Portulaca oleracea	Kolasiman	3.2	7
Poaceae	Saccharum	Talahib	8.3	52
	spontaneum			
Asteraceae	Ageratum conyzoides	Bulak-manok	6.1	44
Poaceae	Imperata cylindrica	Kogon	16.3	61
	Litter		8.5	32

Table 2-6: Computed Frequency in the Ground Cover

Biodiversity Index

- ¹⁶⁵ Species richness and evenness are the important factors in determining biodiversity of an area. Richness is defined as the total number of species present in a sample while evenness is the relative abundance of the species in a sample. Richness' takes on diversity is - the more different the species in a community, the more diverse the area. Evenness considers the number of the individual belonging to the same species (www.countrysideinfo.co.uk). It expresses how evenly the individuals in the community are distributed over the different species.
- ¹⁶⁶ Based from the assessment conducted, the project area has moderate diversity with the computed average Shannon H' of 2.83 for all the transects. Transects 1 and 2 have high biodiversity while only Transect 6 has low diversity.
- ¹⁶⁷ Majority of the trees, bamboos and shrubs were observed in Transects 1 and 2. Moreover, transect 1 and 2 (Sapid Forest) are the site for reforestation of forest and fruit bearing trees. Transects 6 and 7 are located near the helipad and limestone and shale quarry where the soil condition is infertile, and majority of the vegetation is composed of invasive vines and allelopathic grasses and bushes resulting to less plant diversity in the said transects
- ¹⁶⁸ Please see **Table** 2-7 for the results of the computed biodiversity indexes per transect.

Transect	Shannon (H')	Remarks
T1	3.058	High
Т2	3.181	High
Т3	2.688	Moderate
Т4	2.994	Moderate
Т5	2.729	Moderate
Т6	2.353	Low
Т7	2.803	Moderate

Table 2-7: Biodiversity Indexes based from Shannon-Wiener diversity H'

Flora Conservation Status and Endemicity

- Table 2-8 shows the conservation status and endemicity of the observed species. According to the The IUCN Red List of Threatened Species version 2019-1, two species are under endangered (EN), one species is vulnerable (VU) and three species are considered critically endangered (CR). Based on the DAO 2017-11, there is one species considered as critically endangered (CR), one species is under endangered (EN) and five species are vulnerable (VU).
- ¹⁷⁰ There were also three species that were observed to be endemic as shown in the table below.

FAMILY NAME	SPECIES NAME		CONSERVATION STATUS		ENDEMI-
	SCIENTIFIC NAME	COMMON NAME	IUCN (version 2019-1)	DAO 2017-11	CITY
DIPTEROCARPACEAE	Shorea contorta	White	CR	VU	Endemic
DIPTEROCARPACEAE	Shorea astylosa	Yakal	CR	CR	Endemic
FABACEAE	Pterocarpus indicus	Narra	EN	VU	-
DIPTEROCARPACEAE	Shorea negrosensis	Red lawaan	CR	VU	Endemic
DIPTEROCARPACEAE	Dipterocarpus grandiflorus	Apitong	EN	VU	-
MELIACEAE	Toona calantas	Kalantas	DD	VU	-
VERBENACEAE	Vitex parviflora	Molave	VU	EN	-

Table 2-8: List of Flora Species and its corresponding Conservation Status

Economic Importance

¹⁷¹ Majority of the plant species that were identified in study area have commercial and aesthetic/ornamental values while some have food, commercial and medicinal properties. Most of the large tree species can be utilized for lumber, furniture, heavy construction uses, and light construction purposes. Although many of the lower species are considered weeds, they can be utilized for medicinal purposes, construction materials and ornamental plants. Others can be utilized for handicrafts, agricultural implements, fibers, ground cover, dyes and forage.

2.1.4.2 Mining Forest Program and National Greening Program

- ¹⁷² In pursuant to the Section 171 of the Chapter 16 if the revised implementing rules and regulation of R.A. No. 7942, NCC is implementing its Mining Forest Program (MFP). Since 2001, NCC has been conducting reforestation activities within its mined-out areas.
- ¹⁷³ NCC also supports the National Greening Program (NGP) of the national government in coordination with the Community Environment and Natural Resources Office (CENRO) and in partnership with the local communities.

Nurseries

¹⁷⁴ NCC is operating five nurseries located inside its compound and has a total seedlings production capacity of 191,000. NCC has been producing its own seedlings for their tree planting activities and are also being donated to the community as part of their seedling donation program.

Table 2-9: Nurseries in NCC				
Name of Nursery	Location	Area (sq. m)	Capacity (No. of seedlings produced)	
Nursery 1 (Main Nursery)	NCC Compound,	236.58	60,000	
Nursery 2 (Main nursery extension)	Sapid Mini Forest, Brgy. Labayug, Sison, Pangasinan	294.34	8,000	
Nursery 3 (Fruit Bearing Trees)		404.41	40,000	
Nursery 4 (Bamboo nursery)		294.34	10,000	
Nursery 5 (Demo farm)		364.1	1,000	
	Total	1,593.77	191,000	

- NCC established a clonal nursery where plants are produced using material from a single parent. This focused on trials on the propagation of critically endangered Philippine Dipterocarps such as White and Red Lauan, Palosapis, Apitong, and Yakal. When wildlings are not available to collect, bulbs, tip layers, rhizomes and runners, cuttings are collected to provide genetic stock for cloning. The NCC clonal nursery successfully propagated viable planting materials from cuttings of endangered tree species.
- ¹⁷⁶ NCC also built a nursery for fruit-bearing trees to help create income generating activities for their partner farmers. Herbal garden was also established by NCC at the sapid area wherein medicinal plants such as banana, tsaang-gubat, sambong lagundi, oregano, kutsay, ginseng, and others are being planted.
- Table 2-10 shows the inventory of the seedlings that are in stock at the NCC nurseries as of March 2019. The plants are propagated and grown to viable size and out transplanted in partnership with the local farmers. Biodegradable wastes from their offices and canteen are being composted with the aid of African night crawler earthworms and are used in the nurseries.

Common name	Scientific Name	No. of Seedlings in Stock
Forest Trees		
Mahogany Seedlings (old stock)	Toona calantas	63,460
Acacia	Acacia mangium	5,300
Acacia Auri	Acacia auriculiformis	250
Balite	Ficus benjamina	30
Gmelina	Gmelina asiatica Blanco	2,060
Fruit Bearing Trees		
Atis	Annona asiatica	448
Pomelo	Citrus maxima	150
Lemon		75
Guava	Psidium guajava	1000
Сасао	Theobroma cacao	360
Chico		8
Guyabano	Annona muricata	340
Coffee	Coffea liberaca	517
Jackfruit	Artocarpus heterophyllus	320
Mabolo	Diospyros blancoi	650
Rambutan	Nephelium lappaceum	50

Table 2-10: Seedlings inventory in NCC (March 2019)

Common name	Scientific Name	No. of Seedlings in
		Stock
Sampalok	Tamarindus indica	160
Star Apple	Chrysophyllum bicolor	100
Mango		500
Рарауа		110
Palm Tree		15
Bamboo		200
Bamboo (Kawayang Tinik)	Bambusa arundo	675
Bikal	Schizostachyum diffusum (Blanco)	215
Total		76,993

178 NCC also have the "Gulayan sa Minahan" project, located also inside the NCC compound, where different varieties of lowland and highland crops were planted. This is to show that exposure of the crops to the cement dusts does not affect the productivity. The project resulted to high yield of production with proper care and management.

Mining Forest Program (MFP)

- 179 NCC has been conducting reforestation activities for its mine-out areas since 2001 under its Mining Forest Program. As of March 2019, the total area that the NCC has planted within the MPSA is 230.85 hectares.
- 180 The seedlings from the nurseries are transferred to the reforestation areas of NCC to let it fully grow. From 2001 to 2018, NCC was able to plant a total of 174,440 seedlings for its mining forest program with a total of 98.32% survival rate. In 2018, NCC also donated about 21,185 seedlings to the communities. The accomplishment report on mining forest program of NCC is attached as Annex 10. NCC was awarded 3rd runner up for the implementation of its mining forest program last 2015.

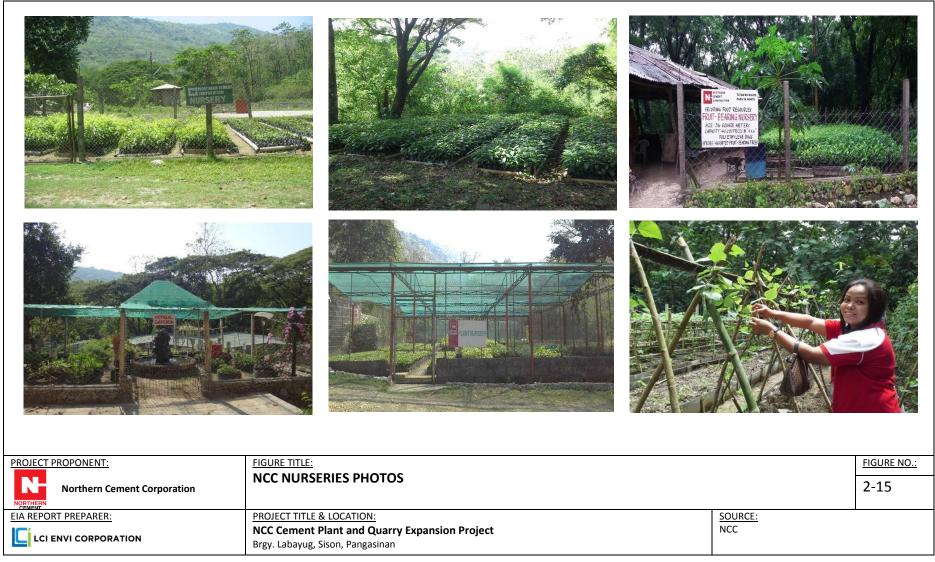
100	ic 2-11. Jul vival hate of with heroi	estation Activities (as of Decen	
Year	No. of Seedlings Planted	No. of Surviving Trees	% Survival Rate
2001-2014	142,690	141,907	99.45
2014-2016	25,500	24,927	97.75
2016-2017	3,000	2,950	98.34
2017-2018	3,250	2,450	75.38
Total	174,440	171,513	98.32

Table 2-11: Survival Rate of MFP Reforestation Activities (as of December 2018)

National Greening Program (NGP)

- 181 In 2012, NCC also started tree planting and reforestation activities to support the National Greening Program (NGP) of the DENR. Under the NGP, the NCC donates seedlings to the host communities, provides manpower during tree planting activities and monitors the survival of the seedlings planted.
- 182 Since 2012, NCC has already planted in a total area of 309.29 hectares outside its mining area. Under this program, NCC was able to plant a total of 278,560 seedlings with survival rate of 98.44%. The accomplishment report of NCC regarding national greening program is attached in Annex 10.

	Table 2-12: Su	rvival Rate of	NGP Reforestation Activities	
Year	No. of Planted	Seedlings	No. of Surviving Trees	% Survival Rate
2012-2014	63,410		62,976	99.0



Year	No. of Seedlings Planted	No. of Surviving Trees	% Survival Rate
2014-2017	193,700	190,294	98.24
2017-2018	20,750	20,250	97.59
2018-2019	700	700	100
Total	278,560	274,220	98.44

NO NORTHERN CEMENT

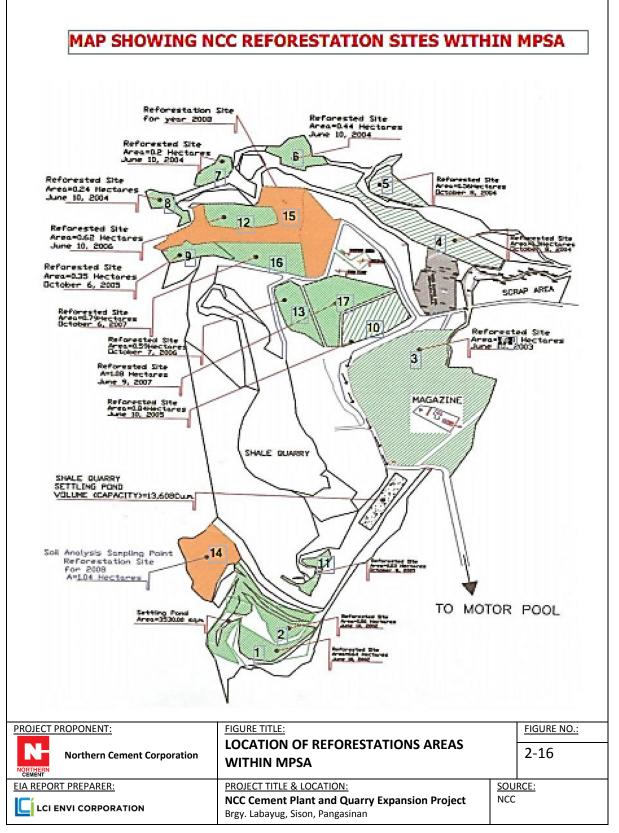

NORTHERN CEMENT CORPORATION. NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

Figure 2-15: NCC Nurseries Photos

2.1.4.3 Terrestrial Fauna

<u>Methodology</u>

- ¹⁸³ The fauna survey was conducted last September 2-5, 2015. The survey covers the four groups of wildlife-vertebrates which include the avi-fauna and herpetofauna species. Rapid survey was employed in the conduct of faunal assessment within the project area. Species not encountered during the period of field assessment is generated through ethnobiological interview with local informants to obtain other important information on the presence of other wildlife species not encountered throughout the survey. Photo documentation of observed wildlife was also undertaken for further species verification when necessary.
- ¹⁸⁴ A total of five (5) observation sites was selected within the study area representing different ecosystem types and elevations. This is to be able to determine faunal composition and diversity in each ecosystem and in relation to elevation. Figure 2-17 shows the locations of faunal sampling sites while summarized in **Table** 2-13 are the corresponding habitat types and geographical coordinates of the five observation sites.

Transas	Location Elevation Coordinates				
Transec	Location	Elevation	Coord	inates	
t		(m)	North	East	
1	Sapid Forest: Milagrosa Watershed	180	16° 09' 29.1"	120° 34' 17.2"	
2	Sapid Forest: Demo Farm	172	16° 09′ 32.0″	120° 34' 13.2"	
3	Sapid forest: Up near nursery	161	16° 09' 31.2"	120° 34' 21.6"	
4	Limestone & Shale Quarry Area- Helipad	218	16° 10′ 3.5″	120° 33' 41.9"	
5	Saguitlang Area	430	16° 10′ 15″	120° 34′ 19″	

Table 2-13: Description and geographic location of selected observation sites

- Birds. Transect lines were established along existing roads/trails at 1-kilometer survey distance per transect. Techniques employed during the survey includes ocular and aural observation, identification through wildlife calls, foot prints and droppings, if any. All the bird species seen and heard by the observer at the sampling site.
- ¹⁸⁶ Reptiles and Amphibians. Active search for reptiles and amphibians was done systematically within the 5 transect lines and in its immediate vicinity especially in areas with the presence of suitable habitats like underneath of decaying logs, uprooted trees and bamboos. For each species observed and heard, the name of the species, number of individuals and the type of habitat where it was found were recorded. Double counting of the individuals of the same species was definitely avoided. Photos of species encountered at the sampling sites was also undertaken.
- ¹⁸⁷ Mammals. For non-volant mammals such as rodents, cage traps (10) was employed baited with dried fish as alternative for coconut meat with peanut butter. Cage traps are laid on strategic sites within the observation sites. Interview with local informants was also undertaken to generate significant information relative to the presence/absence of mammal species in the area. Mist nets were used to sample bat species and were set across river/creek, parallel to trails, and potential flyways.

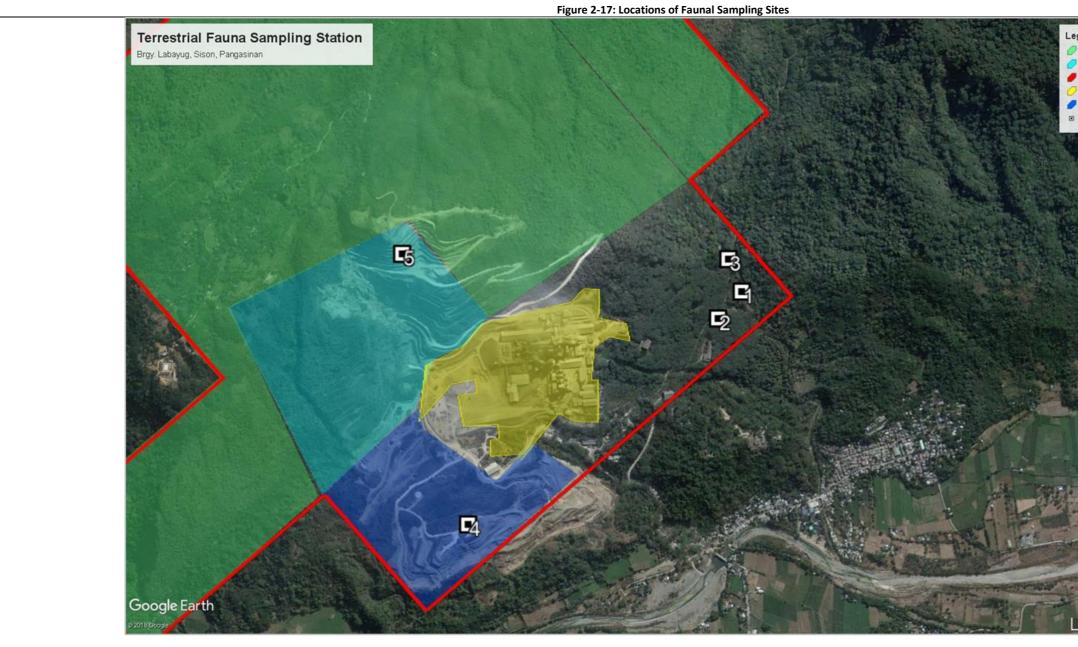
Biodiversity Measurement

¹⁸⁸ Biodiversity measurements were computed and analyzed using the Shannon-Wiener Diversity with formula illustrated below:

Shannon-Wiener Diversity = $H' = -\sum p_i \ln (p_i)$, where,

"H"- represents the symbol for the amount of diversity in ecosystem (species diversity)

"p_i"- represents the proportion or relative abundance of each individual species to the total (measured from 0 to 1)


"In p_i " - represents the natural logarithm of p_i

¹⁸⁹ The interpretation of the values obtained using the above formulas will be based on the Fernando Biodiversity Scale (1998) shown in the table below.

Table 2-14: The	Fernando Biodiversity Scale (1998)
Relative Values	Shannon – Wiener Biodiversity
	(H') Index
Very High	3.5 and above
High	3.0 - 3.49
Moderate	2.5 – 2.99
Low	2.0 - 2.49
Very Low	1.9 and below

Table 2-14: The Fernando Biodiversity Scale (1998)

Transect	Location	Elevati	Coor	dinates
		on (m)	North	East
1	Sapid Forest: Milagrosa Watershed	180	16° 09' 29.1"	120° 34' 17.2"
2	Sapid Forest: Demo Farm	172	16° 09' 32.0"	120° 34' 13.2"
3	Sapid forest: Up near nursery	161	16° 09' 31.2"	120° 34' 21.6"
4	Limestone & Shale Quarry Area- Helipad	218	16° 10' 3.5"	120° 33' 41.9"
5	Saguitlang Area	430	16° 10' 15"	120° 34' 19"

DDOIECT	PROPONENT:

PROJECT PROPONENT: Northern Cement Corporation	EIGURE TITLE: LOCATION OF FAUNA SAMPLING SITES	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: Envitecch I

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

AND DESCRIPTION OF TAXABLE PROPERTY OF TAXABLE	
gend	
Limestone Expansion	
Limestone quarry	
MPSA Perimeter	
NCC Line 1&2	
Shale quarry	
Terrestrial Fauna Survey Stations	
and the second second	
A CONTRACTOR OF	
and the second s	
The Aller Star	
ALC: NO. OF THE REAL PROPERTY OF	
and the second second	
The second second	
1 1 1 1 1 1 1 1 1 1	
The states of the second second	
A MARTIN AND AND	
TU LA TOUR	
A LOARS	
Carlos and and and	
and the second s	
C	
<z< td=""><td></td></z<>	
The second second second	
2000 ft	
200011	
	FIGURE NO .:
	2-17
RCE:	
ecch Environmental Management	Consultancy Services, Inc.
2	-

Fauna Composition and Richness

Birds

- ¹⁹⁰ A total of 13 species belonging to 12 avi-fauna families and a total of 70 individuals were recorded during the fauna survey. Some of the observed bird species were known to thrive in open areas or grassland, agricultural areas while majority subsist on the fruits, macroinvertebrates and other food source that abound in the riparian vegetation of Sapid Forest.
- ¹⁹¹ Among the bird species observed, the Eurasian tree sparrow (Passer montanus) has the highest relative abundance with 34% followed by Philippine maya (Lonchura articapilla) and yellow– vented bulbul (Pycnonotus goiavier) with relative abundance of 24% and 13%, respectively. They are commonly found in household and agricultural areas feeding on grains. Other species have relatively low abundance and are known to occur in patches of forested and riverbank areas in Sapid Forest.
- ¹⁹² List of the bird species observed, and their corresponding abundance and relative abundance are summarized in **Table** 2-15.

Table 2-15	: Abundance and Frequency of Bi	rd Species observed wit	hin the Sampling S	ites
FAMILY	SCIENTIFIC NAME	SPECIES NAME	TOTAL	RELATIVE
			ABUNDANC	ABUNDANC
			E	E
PYCNONOTIDAE	Pycnonotus goiavier	Yellow-vented	9	0.128
		bulbul		
RALLIDAE	Gallirrallus torquatus	Barred rail	7	0.100
COLUMBIDAE	Loriculus philippensis	Parakeet	1	0.014
COLUMBIDAE	Treron vernans	Pink necked	1	0.014
		green pigeon		
HALCYONIDAE	Halcyon chloris	White collared	1	0.014
		ear kingfisher		
LOCUSTELLIDAE	Megalurus palustris	Striated	1	0.014
		grassbird		
ACCIPITRIDAE	Haliastur indus	Brahminy kite	1	0.014
PYCNONOTIDAE	Hypsipetes p. philippinus	Philippine	2	0.028
		bulbul		
CUCULIDAE	Centropus bengalensis	Lesser coucal	1	0.014
ESTRELDIDA	Lonchura atricapilla	Philippine Maya	17	0.242
	jagori			
APODIDAE	Collocalia troglodytes	Swallow/ Pygmy	4	0.057
	-	swiftlet		
PASSERIFORMIDAE	Passer montanus	Eurasian Tree sparrow	24	0.342
LANIIDAE	Lanius cristatus	Brown Shrike	1	0.014
			-	0.01.

Table 2-15: Abundance and Frequency of Bird Species observed within the Sampling Sites

Mammal

¹⁹³ Only *Rattus exulans* (Polynesia rat) was observed in the project site. There were no volant mammals (bats) observed or captured during the survey. According to the local guides, the roosting and nesting sites of fruit bats are currently situated outside the NCC mining area. Their nesting sites were located above the Saguitlang area (430masl) near Tuba, Benguet. Noise

disturbance generated by blasting and heavy equipment operation can affect their foraging activities and nesting sites.

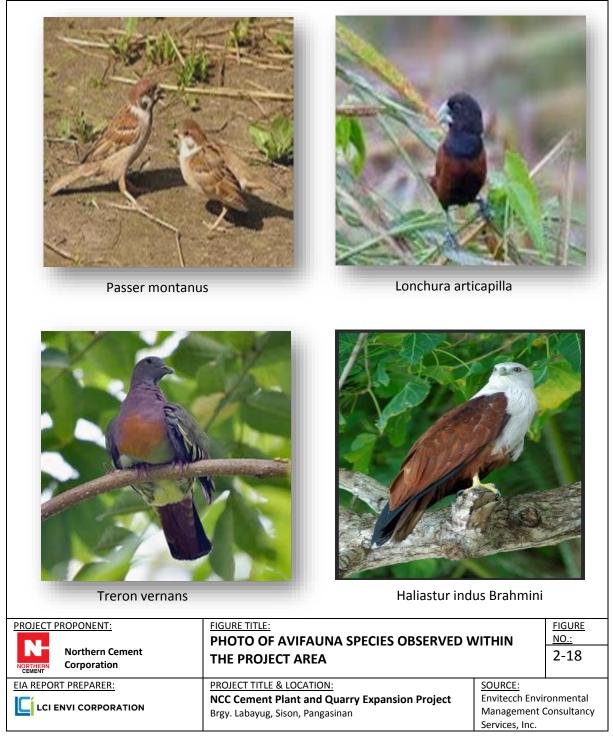
Amphibian and Reptiles

- ¹⁹⁴ Only *Rhinella marinus* (cane toad) was observed during the assessment along the creek's vegetation in Transect 3. *Gekko gecko* (tuko) was observed in Transect 1.
- ¹⁹⁵ According to the local guides, they sighted 3 species of snakes within the Sapid Forest. These are the Elaphe erythrura (Philippine rat snake), *Python reticulatus* (Reticulated python) and viper. Two of these snakes are endemic to the Philippines.

Fauna Endemism and Conservation Status

Birds

- ¹⁹⁶ Endemism of recorded bird species showed that 5 species or 38% are endemic in the country and the rest are non-endemic species.
- ¹⁹⁷ Based on the International Union for Conservation of Nature (IUCN) (2019), all the recorded bird species are under least concern (LC) category. However according to the list of threatened species of DAO 2004-15, there are two endangered species (EN) namely Loriculus philippensis (Parakeet) and Haliastur indus (Brahminy kite).


198	Photos of the observed	fauna species were	presented in Figure 2-18.
	r notos or the observed	Taulia species were	presented in rigure 2-10.

FAMILY	SCIENTIFIC NAME	SPECIES NAME	Endemicity	Conservation Status (IUCN)
PYCNONOTIDAE	Pycnonotus goiavier	Yellow-vented bulbul	-	LC
RALLIDAE	Gallirallus torquatus	Barred rail	Endemic	LC
COLUMBIDAE	Loriculus philippensis	Parakeet	Endemic	LC EN (DAO 2004- 15)
COLUMBIDAE	Treron vernans	Pink necked green pigeon	-	LC
HALCYONIDAE	Halcyon chloris	White collared ear kingfisher	-	LC
LOCUSTELLIDAE	Megalurus palustris	Striated grassbird	-	LC
ACCIPITRIDAE	Haliastur indus	Brahminy kite	-	LC EN (DAO 2004- 15)
PYCNONOTIDAE	Hypsipetes philippinus	Philippine bulbul	Endemic	LC
CUCULIDAE	Centropus bengalensis	Lesser coucal	-	LC
ESTRELDIDA	Lonchura atricapilla jagori	Philippine Maya	Endemic	LC
APODIDAE	Collocalia troglodytes	Swallow/ Pygmy swiftlet	Endemic	LC
PASSERIFORMIDAE	Passer montanus	Eurasian Tree sparrow	-	LC
LANIIDAE	Lanius cristatus	Brown Shrike	-	LC

Table 2-16: Conservation Status and Endemicity of Observed Birds

Figure 2-18: Photos of Avifauna Species Observed within the Project Area

Mammal

199 Based on the International Union for Conservation of Nature (IUCN) (2019), the mammal species observed were under least concern (LC) and none were listed under the DAO 2004-15. There were also no endemic mammal species observed during the survey.

Table 2-17: List of Mammal Species observed within the Study Area											
Family	Scientific Name	Species Name	Conservation Status (IUCN)	Endemicity							
Pteropodidae		Fruit bat	LC	-							
Muridae	Rattus exulans	Polynesian Rat	LC	-							

Amphibian and Reptiles

200 All the amphibian and reptile species recorded were considered as least concern (LC) by the IUCN 2019 and only the Python reticulatus (Reticulated phyton) was listed in the DAO 2004-15 as other threatened species (OTS). Three of the amphibian and reptile species observed are endemic.

	Table 2-18: List of Herpe	tofauna Species observed	l within the Study Area	
Family	Scientific Name	Species Name	Conservation	Endemicity
			Status (IUCN)	
Amphibian				
Bufonidae	Rhinella marina	Cane Toad	LC	Endemic
Reptiles				
Boidae	Python	Reticulated	LC	Endemic
	reticulatus	phyton	OTS (DAO 2004-	
			15)	
Pythonidae	Elaphe erythrura	Philippine rat	LC	Endemic
		snake		
Gekkonidae	Gekko gecko	Tokay gecko	LC	

Table 2.10. List of Howart former Chaption absorved within the Study A

Computed Biodiversity Index

201 Shannon-Wiener Diversity Index (H') was computed for this survey using the bird sampling data. The overall computed biodiversity index of the project site by getting the average biodiversity index of the 5 sampling sites has a computed value of 1.351 which means that the biodiversity in the area is very low. All the sampling sites have very low biodiversity with computed Shanon-Wiener Biodiversity index of below 1.9.

Table	Table 2-19: Computed Biodiversity Index of Each Sampling Sites										
Transects	Abundance	Shannon-Wiener	Fernando's								
		Biodiversity index	Biodiversity Scale								
		(H')	(1998)								
TRANSECT 1	11	1.799	Very Low								
TRANSECT 2	6	1.561	Very Low								
TRANSECT 3	13	1.22	Very Low								
TRANSECT 4	20	1.094	Very Low								
TRANSECT 5	20	1.132	Very Low								

ماميدا بالأنبية والمعالم

2.1.4.4 Vegetation removal and loss of habitat

²⁰² The expansion of the quarry operation will require removal of vegetation communities and associations. The removal of vegetation will also result to reduction in the population of the plant species growing within the disturbance area. However, vegetation clearing will be limited to the quarry areas only. The surrounding vegetation will be preserved to act as natural air and noise buffers. The NCC also conducts reforestation activities in its mined-out areas.

2.1.4.5 Threat to existence and/or loss of important local species

²⁰³ The project will require land clearing, in the new quarry areas, resulting to the removal of portions of remaining vegetation's to give way for the operation of the quarry. This entails to disturbance of wildlife, loss of habitats and reduction to biodiversity composition of the area.

2.1.4.6 Threat to abundance, frequency and distribution of important species

²⁰⁴ Continuous loss of faunal habitats due to degradation of forest cover are brought by land clearing, conversion of remaining sites into settlements and other land uses. Though faunal species are mobile in nature, this situation will force them to migrate in other areas to search for new habitat. Migration of other wildlife to new territories or ecosystem will pose threat to their existence. They can be further exposed to hunting, persecution and trading. Continuous destruction of faunal habitats and disturbance will threaten the remaining species population and survival in the near future if not prevented. Decrease of population to some species in this area will be expected to happen while others may not significantly be affected.

2.1.4.7 Hindrance to wildlife access

- ²⁰⁵ Wildlife disturbance due to noise generated during construction brought about by the operation of heavy equipment's will force faunal species to migrate in other or nearby areas/habitat where disturbance is less.
- ²⁰⁶ Wildlife may find habitat to the erected structures recognized by species within and around built structures and or canals in the long run. Animals sighted within and around the facilities may be allowed to habituate unless they pose danger, damage and/or malfunction to the structure.

2.1.5 Summary of Baseline Findings, Impacts and Mitigation on Land

²⁰⁷ The following table summarizes the impacts and mitigating measures on Land.

Table 2-20: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on Land

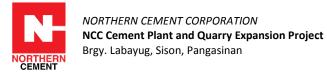
SUMMARY OF BASELINE FINDINGS ON LAND

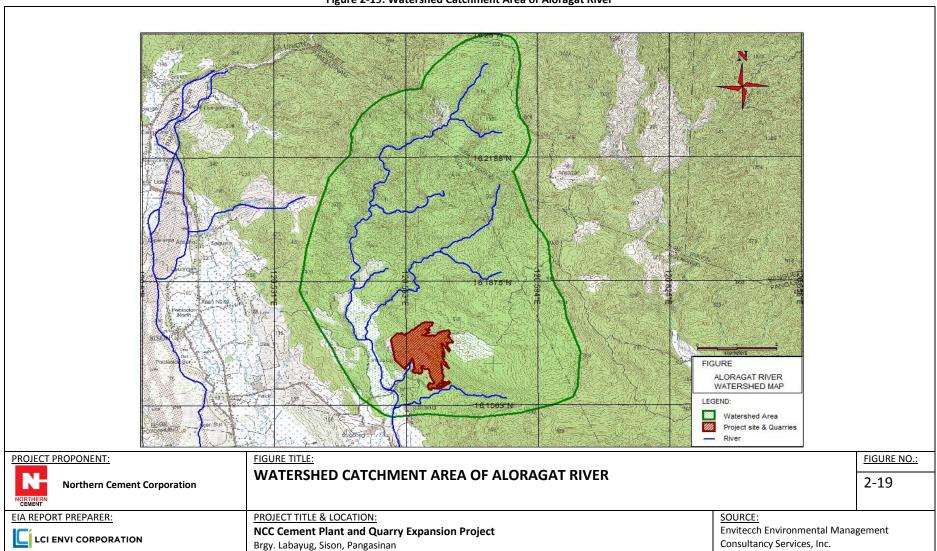
- Land Use and Classification
 - The area where the proposed project is situated is designated as industrial zone.
 - The proposed project site does not fall within any declared ECA and is not covered by any tenurial instrument.
- Geology and Geomorphology
 - There are three fault lines near the location of the NCC Line 1 and Line 2 cement plant.
 - The project site has medium to high susceptibility in terms of earthquake-induced landslide.
 - The project site is not susceptible to liquefaction.
 - The project site has high to moderate susceptibility to landslide.
 - The project site is not a flood-prone area.
 - There are no active volcanoes near the project site.
 - The project site is not prone to tsunami.
- Pedology
 - The project is underlain by Annam Clay Loam and Umingan Silt Loam.

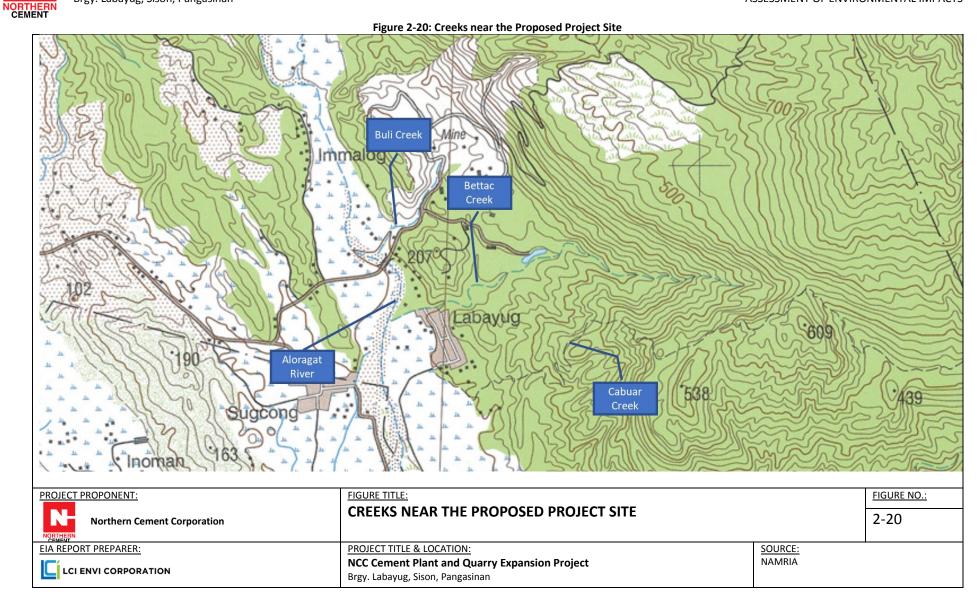
• Terrestrial Ecology

- From the terrestrial flora survey, 2 species are considered as endangered, one species is vulnerable, and 3 species are critically endangered according to the IUCN Red List of Threatened Species. On the other hand, based from the DAO 2017-11, there are one species that is endangered, one species is critically endangered and five are vulnerable.
- There are no critically endangered fauna species found in the project site based from the IUCN list. However, only the *Python reticulatus* (Reticulated phyton) was listed in the DAO 2004-15 as other threatened species (OTS).

POTENTIAL IMPACTS	PROJECT PHASES	FINDINGS/OBSERVATIONS	MITIGATING MEASURES
Geology and Geomor	phology		
Modification of existing terrain	Operation	Existing terrain will be modified due to earth movement and excavation during quarry operation	Reforestation of mined-out areasMine rehabilitation plan
Devaluation of land value a result of improper solid waste management	Construction, Operation	Generation of construction spoils and debris and solid wastes from operations	 Provision of disposal area Segregation of debris according to recyclable and non-recyclables Hauling of debris items by duly- licensed traders Implementation of a solid waste management plan
PEDOLOGY			
Change in soil quality/fertility	Construction, Operation, Abandonment	There is a risk of soil contamination due to the maintenance of heavy equipment	 Collect, store and dispose wastes in safe and sealed containers Treatment and dispose wastes through accredited treaters Use sawdust, rice hulls, or coir dusts to absorb the oil spills
Soil erosion / loss of topsoil	Construction/Oper ation	The removal of vegetation cover will lead to loss/removal of topsoils resulting from excavation activities. Erosion and siltation of the nearby surface water may occur due to occasional rains	 Establish buffer zones with vegetation Avoid unnecessary earth movement and removal of vegetation


POTENTIAL IMPACTS	PROJECT PHASES	FINDINGS/OBSERVATIONS	MITIGATING MEASURES
		and during movement of heavy equipment passing over unpaved roads and soil stockpile area.	
TERRESTRIAL BIOLOG	iΥ		
Vegetation removal and loss of habitat	Operation	Disturbance and/or displacement of flora and fauna	 Prepare management plans and protection/conservation strategies Perform earth-balling for trees when necessary Avoidance of unnecessary tree-cutting Establishment of plant nurseries Retaining and managing viable habitat units within and surrounding the project's development block areas Mining Forest Program National Greening Program activities Conduct trainings, seminars and field demonstrations on company personnel on how to identify, care, propagate these threatened native tree species




2.2 The Water

2.2.1 Hydrology/Hydrogeology

- ²⁰⁸ There are two rivers that passes the Municipality of Sison, the Bued river and Aloragat river. Brgy. Labayug, where the NCC compound is located, is within the catchment area of Aloragat river.
- ²⁰⁹ Bued river is formed at the southeastern portion of Baguio City then transverses the Municipality of Tuba, Sison, down to the Municipality of Mangaldan where it merges with the Angalacan River and discharges to the Lingayen Gulf.
- ²¹⁰ The catchment area of Aloragat river has a total area of 5,217 hectares. Its headwaters are formed from the Lipit River, in the upper slopes of the southern Cordillera mountain range in the Municipality of Tuba. Aloragat River traverses Barangay Labayug and is the major receiving water body near the NCC cement plant.
- ²¹¹ There are four creeks that are near the proposed project site. Bettac creek transverses inside the the site. Buli creek is located at the far north of the project site while the Sapid creek and Cabuar creek are at the south portion. All these creeks discharges to the Aloragat River.

2.2.1.1 Change in drainage morphology/inducement of flooding/reduction in stream volumetric flow

- ²¹² Change in drainage morphology is inevitable given the nature of the project. Furthermore, removal of vegetation may reduce the water holding capacity of the watershed, which may result to higher discharges during heavy rainfall. NCC already constructed drainage system in the cement plant and in the quarry areas to minimize the impact to the natural drainage of the area.
- ²¹³ The project will not also induce flooding in the area since there is a stormwater drainage system in the project site. Sedimentation ponds were also constructed in strategic areas around the plant site and in the quarry areas to catch the run-off, wastewater and rainwater. Water from these ponds are reused in the operation of the project. Discharges in the project site is limited only to the overflows of these ponds.

2.2.1.2 Change in stream, lake water depth

- ²¹⁴ Surface run-off from the quarry areas may contain high amount of sediments that may cause siltation to the nearest creeks and river and may affect the stream depth. However, NCC has already constructed several siltation ponds in the quarry area to catch the surface run-off and allow settling of the silts. These ponds are regularly desilted.
- ²¹⁵ Soil erosion may also happen in the area due to the quarry operation. This may cause aggradation and shallowing of nearby streams if not properly mitigated. NCC has been conducting reforestation activities in its mined areas as part of the rehabilitation program. The increased tree cover can significantly reduce and eventually minimize soil erosion in the area.

2.2.1.3 Depletion of water resources/competition in water use

- ²¹⁶ The expansion of the cement plant and quarry will be utilizing 1,330 m³ of water per day wherein 1,015 m³/day will be sourced from the deepwells and Sapid Creek and about 315 m³/day of water is reused from the desilted water from the siltation ponds.
- ²¹⁷ The proposed expansion project is not expected to cause depletion of water resources and competition in water use. In the past, NCC did not experience water shortage during its operation. NCC is also practicing water reuse in its operation.
- ²¹⁸ Furthermore, there were no recorded complaints from the community specifically on water resource competition. In fact, according to a geo-resistivity study commissioned last July 2019, several deep wells in the vicinity, specifically in Brgy. Calunetan, Brgy. Inmalog, Brgy. Labayug, Brgy. Sugcong and Brgy. Paldit can be constructed⁴.

2.2.2 Oceanography

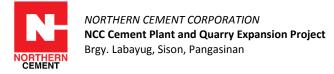
²¹⁹ Since there will be no jetty/port and/or subsea structures component of the project that can change the bathymetry in the area, this section is not applicable.

2.2.3 Water Quality

2.2.3.1 Degradation of groundwater quality

²²⁰ Five groundwater samples were collected last July and September 2019 at the deep wells of NCC and at the groundwater sources of Brgy. Labayug. The samples were sent to the laboratory of CRL

⁴ Gatdula A.R. "Geo-resistivity Survey to Detect Aquifers at Six Barangays in the Municipality Sison Province of Pangasinan" July 2019


Environmental Corporation for the analysis. The results were then compared to the Philippine National Standards for Drinking Water (PNSDW) based on the DOH Administrative Order No. 2017-01 and to the ambient water quality for Class A water body according to the DENR AO No. 2016-08.

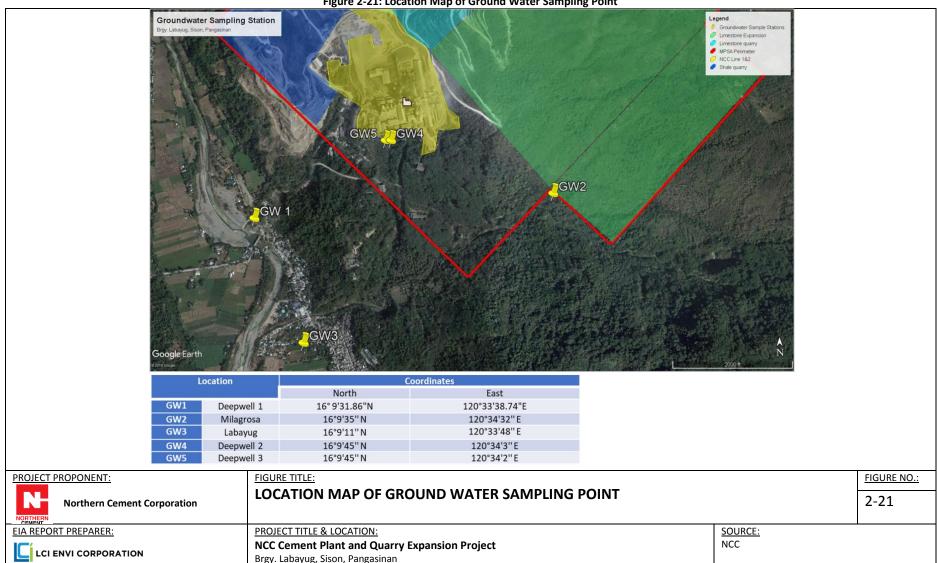

- As shown in **Table** 2-21, only the fecal coliform of all the water samples exceeded the standard limits. The contamination of the groundwater samples can be due to the seepage from the septic tanks of the households in the community.
- ²²² The ground water quality may be affected by accidental oil spills due to the influx of heavy equipment during the construction phase. Maintenance of these equipment must be limited in an area lined with cement.
- Accidental oil spills may also happen during the operation phase since there will be trucks that will deliver the products. The trucks shall not have access to areas that are not lined with cement. The proponent has a truck marshaling area within the project site.
- ²²⁴ Diesel oil will also be stored in the area. Storage of fuel in the area increases the risk of accidental oil spills. Bund walls and secondary containment areas are part of the design of the fuel storage.
- ²²⁵ Another aspect that may affect ground water quality is the influx of workers in the area. Ground water quality may be affected by domestic wastewater. Proper sanitation facilities were already installed in the project site and septic tanks are regularly desludged.

		Table 2-21.	incounts of G	ound wate		ary 515					
PARAMETER	UNIT		DETECTED LEVEL AT THE SAMPLING POINTS BASED ON LABORATORY ANALYSIS (values in RED exceed the reference standard/s) FOR FOR C DRINKING A WA WATER BOI QUALITY								
		GW 1	GW 2	GW 3	GW 4	GW 5	(DOH AO No. 2017- 10)	(DENR AO No. 2016- 08)			
Total Suspended Solids	mg/L	<2.5	<2.5	<2.5	<2.5	<2.5	*	50			
Oil & Grease	mg/L	<0.41	0.63	0.63	0.43	0.44	*	1			
Total Coliform		>8.0	8.0	8.0	>8.0	4.6	*	*			
Fecal Coliform	MPN/100mL	>8.0	8.0	8.0	4.6	4.6	<1.1	<1.1			
Arsenic	mg/L	<0.008	<0.008	<0.008	<0.008	<0.008	0.01	0.01			
Cadmium	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	0.003			
Chromium	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	0.05	0.01			
Lead	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005	0.01	0.01			
Mercury	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.001	0.001			
NOTES: mg/L =	Milligrams per liter	MPN/100mL	= Most proba	ble number p	er 100 millilit	ers					

Table 2-21: Results of Ground Water Quality Analysis

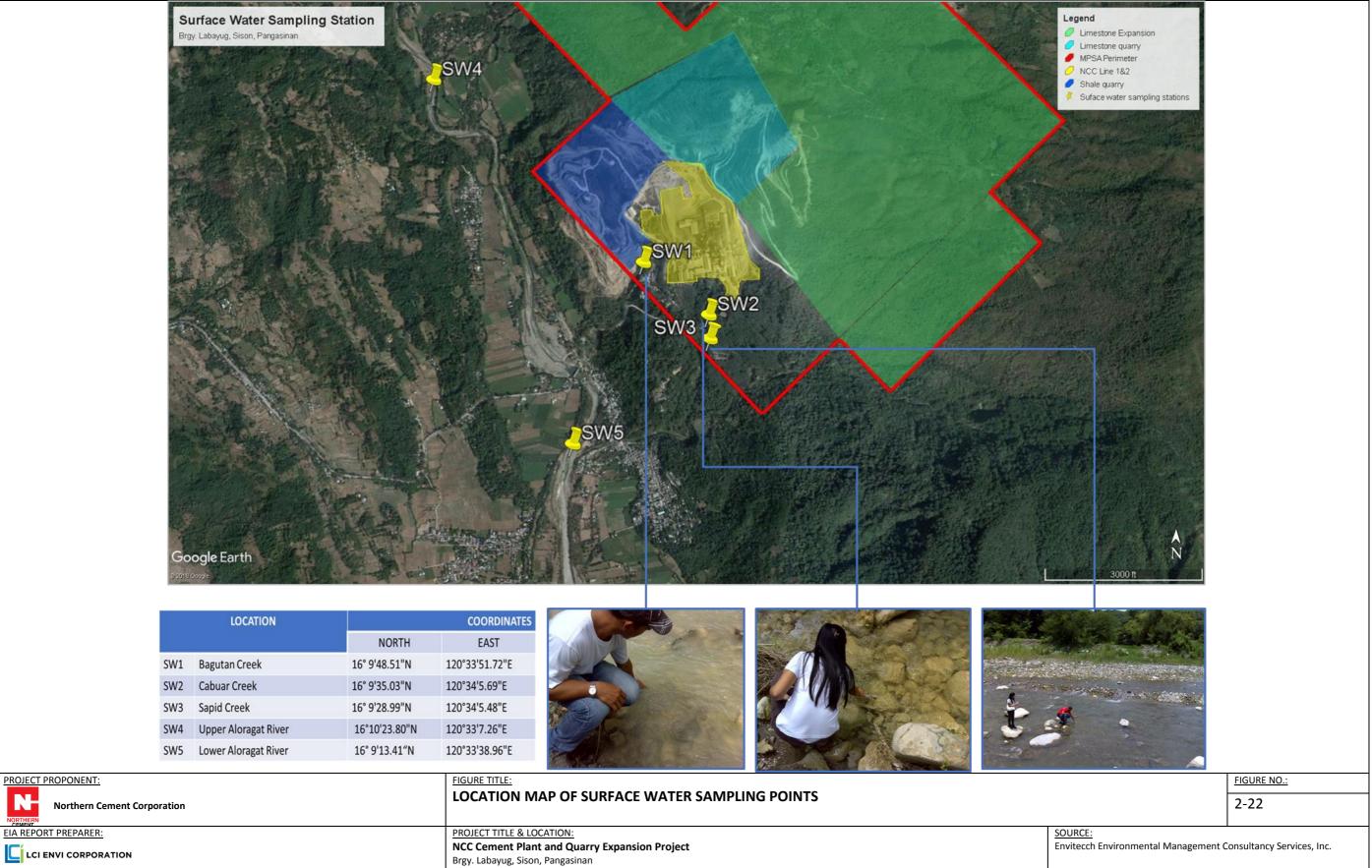
(*) No guideline value at present

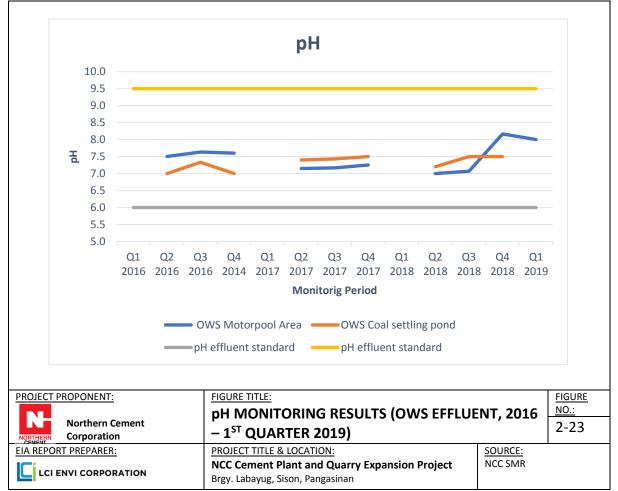
2.2.3.2 Degradation of surface water quality

- ²²⁶ Three water samples were collected from the creeks within the project site last August 11, 2015, April 25, 2016 and July 10, 2019. The water samples were analyzed by the CRL Environmental Corporation. Details of the location of the surface water sampling site are shown in **Figure** 2-22.
- ²²⁷ The results of the laboratory analysis were compared to the ambient water quality for Class C water based on DAO 2016-08. As shown in **Table** 2-22, all the parameters are within the standards except for the fecal coliform at SW1, SW3, SW4 and SW5. Also, all the five stations have high total coliform content. This can be due to the disposal of untreated domestic wastewater of the nearby communities to the creeks and due to agricultural run-offs. Gold panning activities were also observed in the Aloragat River

		Table 2-22:	Results of Surf	ace Water Qu	ality Analysis						
PARAMETER	UNIT		DETECTED LEV			S	GUIDELINE				
				LABORATOR			VALUE				
		(va	alues in <mark>RED</mark> ex	ceed the refe	ence standarc	l/s)	FOR CLASS C				
		SW1	SW 2	SW 3	SW 4	SW 5	(DENR AO No.				
							2016-08)				
рН	рН	7	7.2	7.4	-	-	6.5 - 9.0				
BOD₅	mg/L	1	1	1	1	<1	7				
COD	mg/L	18	10	814	20	18	-				
DO	mg/L	1	9	8.5	8	8	5				
Oil &	mg/L	0.4	0.5	0.4	0.93	0.60	2				
Grease											
Total	mg/L	33	84	2.5	-	-	80				
Suspended											
Solids											
Total	MPN/100mL	24,000	2,400	1,600	9,200	16,000	-				
Coliform											
Fecal	MPN/100mL	2,400	78	920	3,500	16,000	200				
Coliform											
Mercury	mg/L	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.002				
Lead	mg/L	<0.05	<0.05	<0.05	<0.005	<0.005	0.05				
Cadmium	mg/L	<0.006	<0.006	<0.006	<0.001	<0.001	0.005				
Arsenic	mg/L	<0.01	<0.01	<0.01	<0.008	<0.008	0.02				
Chromium	mg/L	<0.003	<0.003	<0.003	<0.005	<0.005	0.01				
NOTES: mg/L =	Milligrams per liter	MPN/100mL	= Most probable	e number per 10	0 milliliters						

Table 2-22: Results of Surface Water Quality Analysis




Figure 2-22: Location Map of Surface Water Sampling Points

N

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS



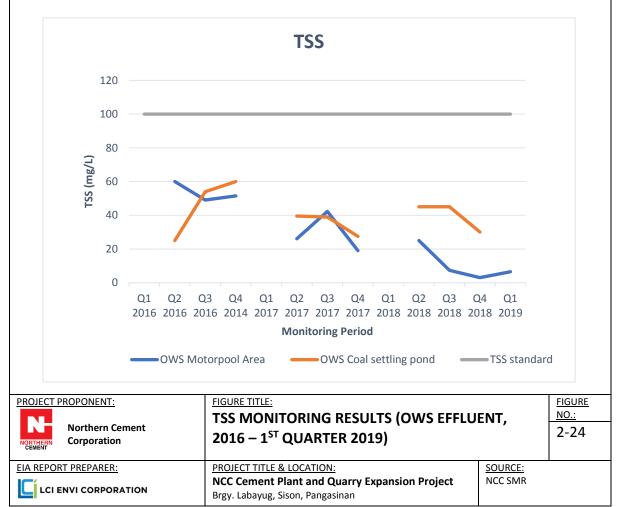
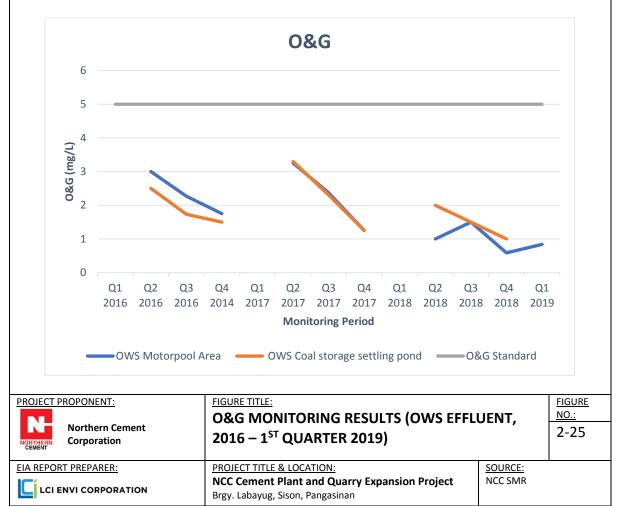

- NCC is also monitoring the effluent discharged from their motorpool wash bay and coal settling pond area in terms of pH, oil & grease and total suspended solids. NCC installed oil and water separator tanks in these areas to avoid the discharge of oil in the drainage during maintenance activities. The effluent from these tanks are discharged to the Aloragat River.
- ²²⁹ The results were compared to the effluent standards of DAO 2016-08 for Class C water. The monitoring results from 2016 until 1st quarter of 2019 are shown in **Figure** 2-23 to **Figure** 2-25. There are some monitoring periods that have no data because there were no discharges from the OWS at the time the samples were collected.
- As shown in the results, all the measured parameters are complying with the general effluent standards of DAO 2016-08.

Figure 2-23: pH Monitoring Results (OWS effluent, 2016 - 1st quarter 2019)



2.2.4 Freshwater Ecology

- ²³¹ Four stations within the Sapid creek were established for the assessment of the freshwater ecology in 2016. Benthos were sampled using a surber sampler laid along the streambed. The substrate was agitated while rocks and stones are washed to dislodge the benthos and captured in the net. All samples were stored in polyethylene bottles and preserved with Ethyl Alcohol. Samples are bought to the laboratory for analysis. Location of the stations are is shown in **Figure** 2-26.
- ²³² Sampling for benthic organisms in Cabuar and Bagutan were not pursued due to steep and unsafe access to the streams and unfavorable initial assessment. Cabuar creek is structurally limited with very shallow water not expected to host a healthy benthic community. Bagutan creek was dry during the time of sampling.
- A total of 190 individuals belonging to 9 orders and 16 families (taxa) were recorded during the survey. Among the 4 stations, Station 1 and Station 2 have the highest number of macroinvertebrate individuals observed with 63 and 50 individuals, respectively. These transects in Sapid creek are located near the spring pond where riparian vegetation thrives like bamboo, figs and other shade trees favorable for macroinvertebrates growth and survival. The list of the macroinvertebrate individuals observed in the stations is shown in **Table 2**-23.
- ²³⁴ In terms of %relative abundance, Family Culicidae with 29% is the highest followed by Family Ampulariidae and Family Gyrinidae with both 20% relative abundance. **Figure** 2-27 shows the relative abundance of the macroinvertebrates.

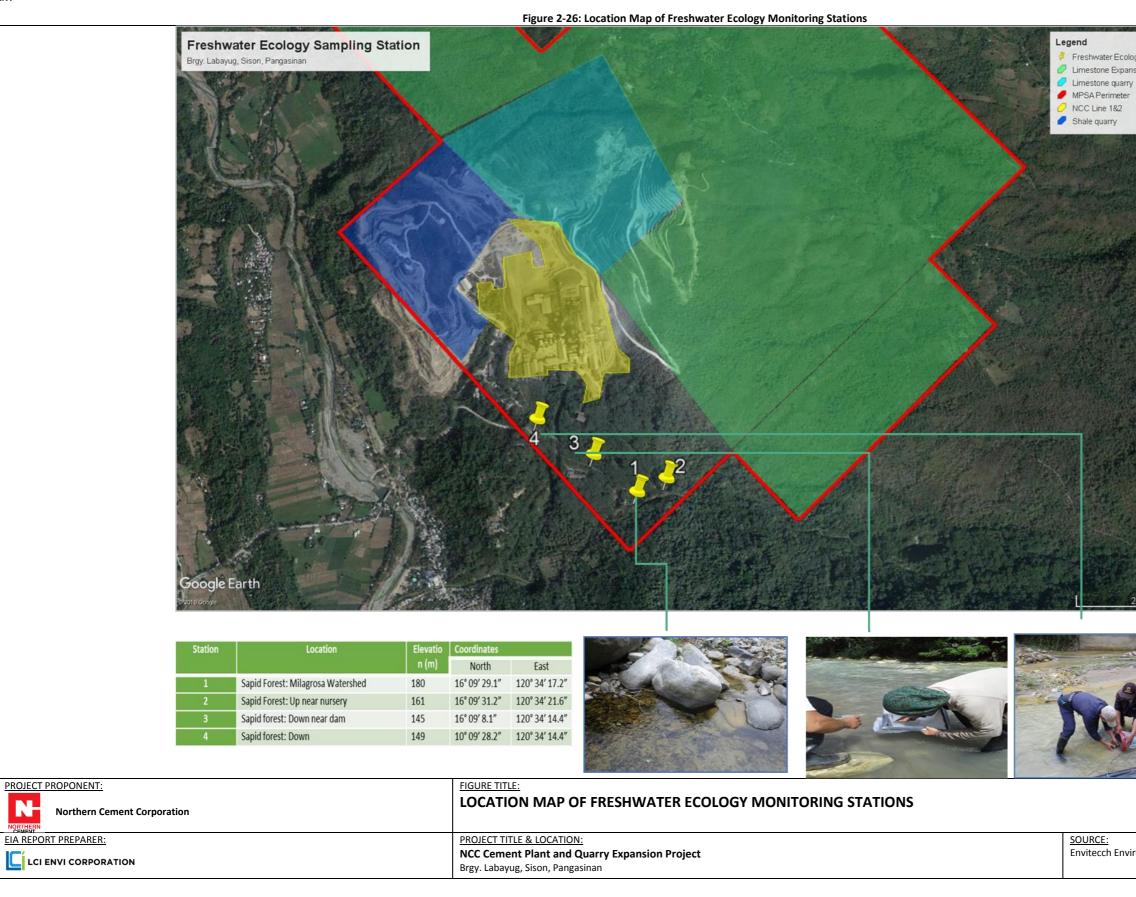
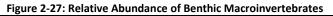
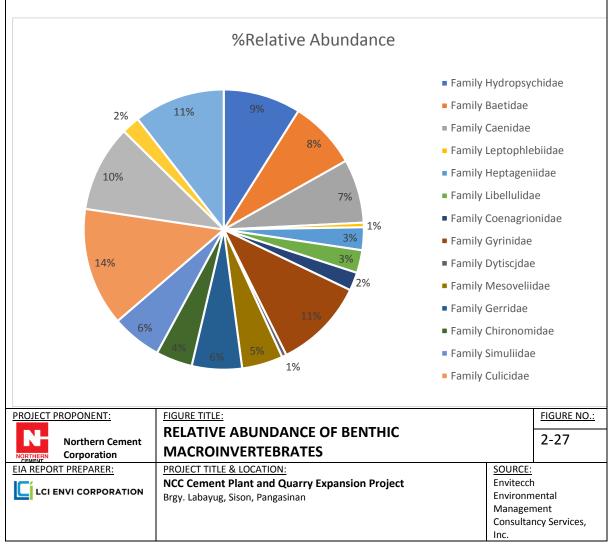

Freshwater Benthos Taxa		Sampling	TOTAL		
	1	2	3	4	ABUNDANCE
Phylum Arthropoda					
Class Insecta					
Order Trichoptera- caddisflies					
Family Hydropsychidae	12	5	-	-	17
Order Ephemeroptera- mayflies					
Family Baetidae	5	8	-	2	15
Family Caenidae	10	2	1	1	14
Family Leptophlebiidae	1	-	-	-	1
Family Heptageniidae	3	1	-	1	5
Order Odonata- dragonfly;damselfy					
Family Libellulidae	3	1	-	1	5
Family Coenagrionidae	1	2	1	-	4
Order Coleoptera-water beetles					
Family Gyrinidae	2	8	3	7	20
Family Dytiscjdae	1	-	-	-	1
Order Hemiptera-water bugs					
Family Mesoveliidae	1	2	1	5	9
Family Gerridae	2	1	5	3	11
Order Diptera-flies, gnats					
Family Chironomidae	1	-	2	5	8

Table 2-23: Taxonomic Listing, Abundance and Distribution of Freshwater Benthic Macroinvertebrates

Freshwater Benthos Taxa		Samplin		TOTAL	
	1	2	3	4	ABUNDANCE
Family Simuliidae	3	8	-	-	11
Family Culicidae	7	5	10	4	26
Class Malacostracea					
Order Decapoda-crabs	11	7	-	1	19
PHYLUM ANNELIDA					
Class Oligochaeta-bloodworms	-	-	2	2	4
PHYLUM MOLLUSCA- snails					
Family Ampulariidae	-	-	7	13	20
GRAND TOTAL	63	50	32	45	190





Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

2.2.4.1 Threats to existence and/or loss of important local species and habitat

- Activities in the watershed can impact populations of biotic macroinvertebrate in the study area. Cutting of vegetation eliminates leaves and woody debris which are important primary food sources of the species.
- ²³⁶ Quarry operation may cause increase in turbidity of the nearby creek due to stormwater run-off. Sediment runoff will have a potential impact to river organisms as well as flora and may be a potential source of threat to existence of locally important species.
- ²³⁷ Domestic wastewater will also be generated during the construction and operation of the proposed project. Discharge of untreated domestic wastewater in the creeks may cause deterioration of its water quality making it unsuitable habitat for aquatic species.

2.2.4.2 Threat to abundance, frequency and distribution of species

²³⁸ Impact of the construction activities within the project area and the quarry operation is the expected increased siltation/sedimentation (water turbidity) in the nearby creeks resulting from earth -moving activities (clearing or removal of groundcover and vegetation, excavation, leveling, and filling). Turbidity would tend to limit light penetration in the water column, which is essential in photosynthesis, a vital process in the ecosystem.

The expansion project is expected to have a minimal effect the abundance, frequency and distribution of species in the nearby creeks. Siltation ponds are installed in the project area to catch the surface run-off from the quarry areas.

2.2.5 Marine Ecology

²⁴⁰ The project site is located far from any marine or coastal area.

2.2.6 Summary of Baseline Findings, Impacts and Mitigation on Water

²⁴¹ The following table lists the impacts and mitigation on Water:

Table 2-24: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on Water

Summary of Baseline Findings on Water:

• Hydrology/Hydrogeology

• The project site is located within the catchment area of Aloragat River. There are four creeks near the project site; Buli Creek, Bettac Creek, Sapid Creek and Cabuar Creek.

Groundwater Quality

- o All the groundwater samples collected exceeded the standard limit for fecal coliform.
- Surface Water Quality
 - \circ ~ SW1 and SW3 exceeded the standard for fecal coliform.
 - All the stations have high total coliform content.
- Freshwater Ecology
 - Station 1 and Station 2 have the highest number of macroinvertebrate individuals observed with 63 and 50 individuals, respectively. These transects in Sapid creek are located near the spring pond where riparian vegetation thrives like bamboo, figs and other shade trees favorable for macroinvertebrates growth and survival.
 - Family Culicidae, Family Ampulariidae and Family Gyrinidae are the most abundant species.

POTENTIAL	PROJECT PHASES	DESCRIPTION	MITIGATING MEASURES
IMPACTS	PROJECT PRASES	DESCRIPTION	WITIGATING WEASORES
WATER QUALITY			
Degradation of ground water / surface water quality	Construction/Operation	Accidental oil spills from heavy equipment Accidental oil spill from delivery trucks	Use sawdust, rice hulls, or coir dusts to absorb the oil spills. Maintain canal in the maintenance and repair area of vehicles and equipment. Installation of oil and water tank separator
	Construction/ Operation	Ground and surface water contamination from improper disposal of wastes, percolated wastewater, sludge and fecal matter	Provision of sanitation facilities for workers (e.g. toilets, showers, etc.) Provision of Sewage Treatment Plant
Degradation of surface water quality	Construction	Possible siltation and surface runoff Increase in turbidity of surface water	Establishment of sediment traps and erosion barriers Regular removal of silt and sediments
	Operation	Runoff from plant and quarry operations	Installation and maintenance of drainage

POTENTIAL IMPACTS	PROJECT PHASES	DESCRIPTION	MITIGATING MEASURES
			system within the plant and quarry areas. Provision of siltation ponds in the quarry areas.
HYDROLOGY/HYDRO	GEOLOGY		
Competition in water use	Construction/ Operation	Construction and operation activities of the project may cause water competition with the communities	NWRB permits were secured for the operation of deep wells. Implementation of water conserving measures Reuse of water
FRESHWATER ECOLO	GY		
Threat to existence and/or loss of important local species and habitat	Construction/ Operation	Possible siltation that may disturb species	Installation of silt curtain Establishment of sediment traps and erosion barriers Regular removal of silt and sediments.

2.3 The Air

2.3.1 Meteorology/Climatology

²⁴² The coverage of the EIA study on Air Module includes the host barangay Labayug, particularly the residential areas in the vicinity. It is important to consider in this study the cumulative impacts of the current and future operations of NCC and SMNCI on air quality.

2.3.1.1 Change in the local micro-climate

- ²⁴³ Climate pertains to the average long-term weather of an area and is typically determined over a period of at least 30 years. It is an essential environmental factor as it affects general growth and development. In the Philippines, climate is classified into 4 types based on the rainfall distribution and pattern.
- ²⁴⁴ The Municipality of Sison falls under the Type I Climate under the Modified Coronas Climate Classification System. Type 1 Climate is characterized as having two (2) pronounced seasons: dry from November to April and wet the rest of the year **Figure** 2-28.

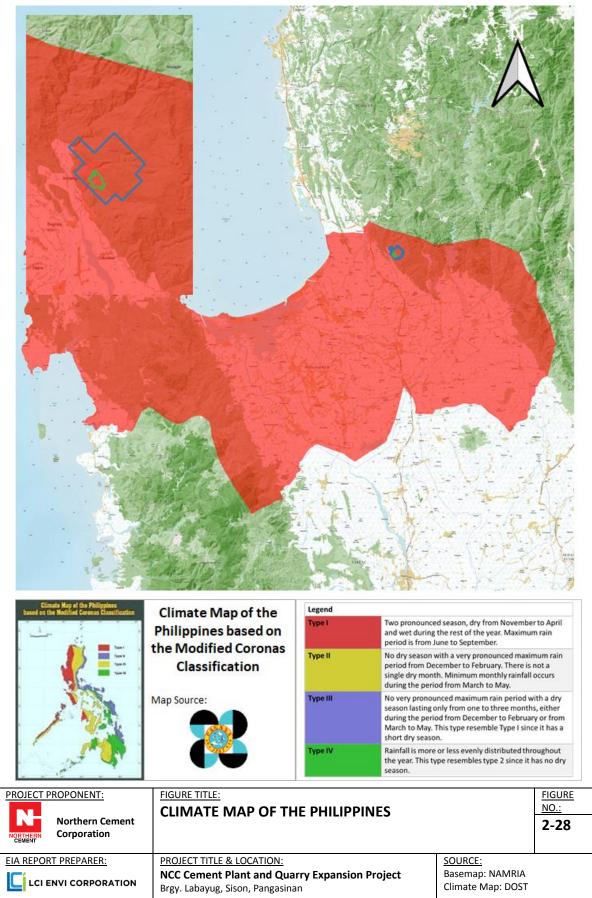
Temperature

- ²⁴⁵ April is the hottest month of the year, with a recorded mean temperature of 29.5 degrees Celsius (°C), while January is the coldest month, with an average temperature of 25.8°C (**Table** 2-25).
- According to the climatological extremes (**Table** 2-26), the highest temperature recorded in the area is 39.9°C on April 12, 1915, while the lowest recorded temperature is 14.3°C on January 8, 1907.

<u>Rainfall</u>

- According to the Climatological Normals in Dagupan City, the area may experience about 2,380.9mm of rainfall annually, with 119 rainy days. The highest amount of rainfall is experienced in August (581.3mm), while the lowest amount of rainfall is experienced in January (6.7mm).
- ²⁴⁸ The climatological extremes is presented in Error! Reference source not found.. According to the d ata, the greatest daily rainfall experienced in the area was on May 27, 2003 at 722.6 millimeters.

Surface Wind


²⁴⁹ Wind directions in Pangasinan are southward from October to June and southeastward July to September.

Tropical Cyclones

²⁵⁰ Tropical cyclones or typhoons are the most influential factors that bring considerable rainfall in the Philippines. Typhoons usually occur in the country from June to December, with highest frequencies during the months of July and August. The mean annual number of typhoons that pass through the Philippine Area of Responsibility (PAR) is about 20. As shown in **Figure** 2-29, an average of five cyclones pass by Pangasinan every 3 years.

Table 2-25: Mean Historical Monthly Temperature and Rainfall Data (1981-2010)

STATION: DAGUPAN CITY, PANGASINAN PERIOD: 1981 - 2010

LATITUDE: 16°05'12.75"N LONGITUDE: 120°21'08.10E ELEVATION: 2m

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16a)	(16b)	
	RAINFA	LL		•	TEMP	ERATURE	•	•				WI	ND		NO. OF DAYS W/		
MONTH	AMOUNT (mm)	NO. OF RD	MAX (°C)	MIN (°C)	MEAN (°C)	DRY BULB (°C)	WET BULB (°C)	DEW POINT (°C)	VAPOR PRESS. (mbs)	RH (%)	MSLP (mbs)	DIR (16pt)	SPD (mps)	CLOUD AMT. (okta)	TSTM	LTNG	
JAN	6.7	1	30.8	20.7	25.8	25.7	23	21.9	26.2	79	1012	S	2	4	0	0	
FEB	10.7	1	31.8	21.2	26.5	26.4	23.5	22.4	26.9	78	1012	S	3	3	0	0	
MAR	22.2	2	33.2	22.6	27.9	27.6	24.5	23.4	28.6	77	1011	S	3	3	1	1	
APR	60.4	5	34.7	24.4	29.5	29.1	25.8	24.7	30.9	77	1010	S	3	4	5	6	
MAY	209.8	10	34.1	24.8	29.4	29.1	26.2	25.3	32	79	1008	S	3	5	14	17	
JUN	337.9	17	33.1	24.7	28.9	28.4	26.1	25.3	32.2	83	1008	S	2	6	17	15	
JUL	499.6	21	32	24.4	28.2	27.8	25.9	25.3	32.1	86	1007	SE	2	6	17	15	
AUG	581.3	22	31.3	24.3	27.8	27.4	25.7	25.1	31.8	87	1007	SE	2	7	14	12	
SEP	368.4	20	31.6	24.2	27.9	27.6	25.7	25	31.7	86	1008	SE	2	6	14	14	
OCT	215.9	11	31.9	24	27.9	27.8	25.6	24.8	31.3	84	1009	S	2	5	8	9	
NOV	53.9	5	31.8	23	27.4	27.3	24.9	24.1	29.8	82	1010	S	2	4	2	2	
DEC	14.1	2	30.9	21.4	26.2	26.2	23.6	22.6	27.3	80	1012	S	2	4	1	1	
ANNUAL	2380.9	119	32.3	23.3	27.8	27.5	25.1	24.2	30.1	82	1009	S	2	5	93	92	

Definition of Terms:

Climatological Normals - Period averages computed for a uniform and relative long period comprising at least three (3) consecutive10-year period.

Rainfall Amount (column 2) - The amount of precipitation (rain, hail, etc.) expressed in millimeters depth of the layer of the water which has fallen.

Number of Rainy Days (column 3) - A rainy day is defined as a period of 24 hours beginning at 8AM to 8 AM of the next day during which at least 0.1 mm of rain is recorded.

Maximum Temperature (column 4) - The maximum temperature in °C recorded for the day, usually occurring in the early afternoon.

Minimum Temperature (column 5) - The minimum temperature in °C recorded for the day, usually occurring during early hours of the morning (before sunrise).

Mean Temperature (column 6) - The average of the maximum and minimum temperature in °C recorded for the day. Mean Temperature = Maximum + Minimum / 2

Dry Bulb Temperature (column 7) - It gives the air temperature in °C at the time of observation.

Wet Bulb Temperature (column 8) - It gives the temperature in °C that an air parcel would have if cooled adiabatically to saturation at constant pressure by evaporating water in it.

Dew Point Temperature (column 9) - The temperature in °C at a given pressure, to which the air must be cooled to become saturated. It is the temperature when atmospheric moisture begins to condense to liquid forming "dew" upon objects.

Vapor Pressure (column10) - Denotes the partial pressure of water vapor in atmosphere in millibars (mbs). As the water evaporates, additional water vapor is introduced into space above and pressure increases slightly as the new vapor is added. The increasing pressure is due to an increase in the partial pressure of water vapor.

Relative Humidity (column 11) - The ratio of the amount of water vapor actually in the air to the maximum amount the air can hold at that temperature.

Mean Sea Level Pressure (column 12) - The force exerted by the weight of the atmosphere on a unit area at the mean sea level. It is also the atmospheric pressure at mean sea leve measured in millibars (mbs).

Prevailing Winds (column 13 & 14) - The prevailing wind direction expressed using the 16 compass points which is most frequently observed during a given period while the average wind speed in meters per second is the arithmetic average of the observed wind speed.

Cloud Amount (column 15) - The amount of cloud present in the sky, expressed in oktas of the sky cover. Okta is the function used in denoting cloud amount and is equal to 1/8 of the whole sky.

Days with Thunderstorm (column 16a) - A thunderstorm day is defined as an observational day during which thunder is recorded at the station.

Days with Lightning (column 16b) - A day with lightning is reported whenever lightning is observed.

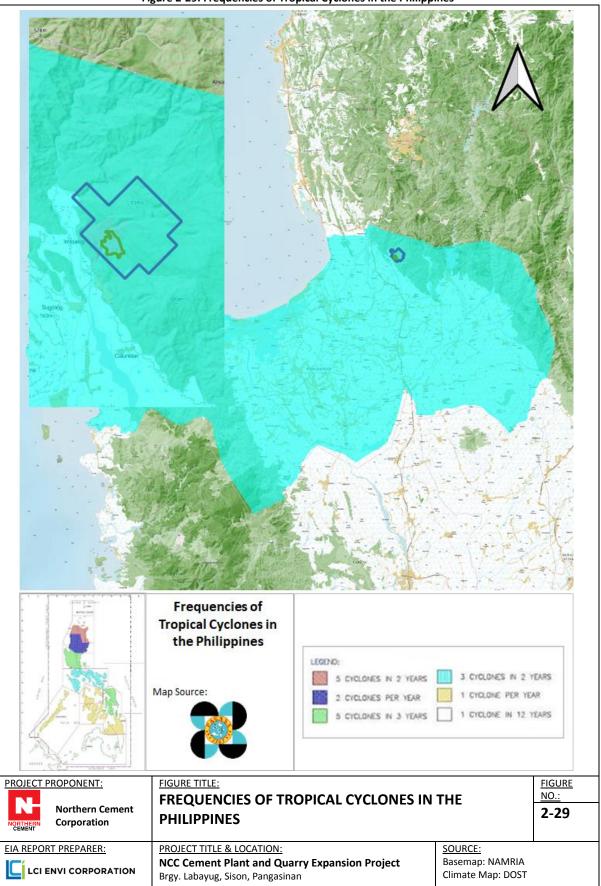
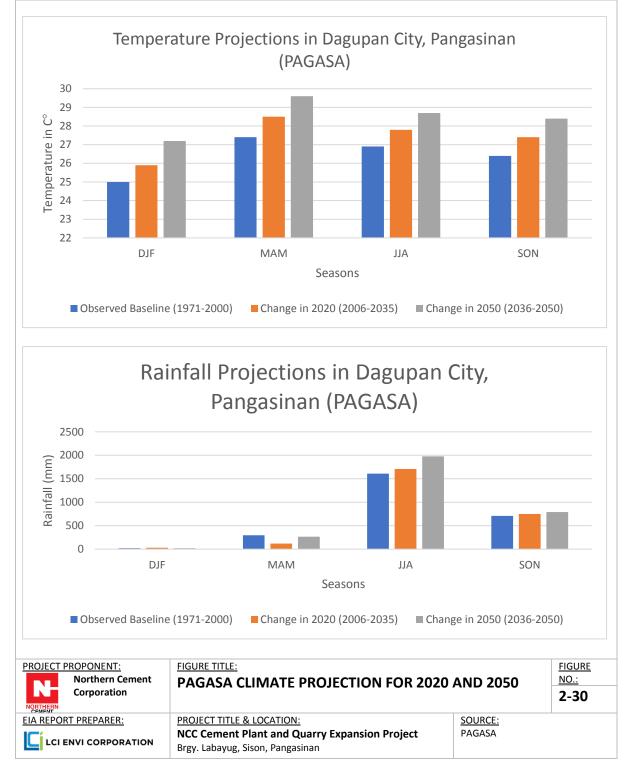

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

Table 2-26: Climatological Extremes Dagupan City, Pangasinan (as of 2018)

STATION: DAGUPAN CITY, PANGASINAN Year: As of 2018 LATITUDE: 16°05'12.75"N LONGITUDE: 120°21'08.10E ELEVATION: 2m

MONTH	MONTH TEMPERATURE (°C))	GREATEST DAILY RAINFALL (mm)		STRONGEST WINDS (mps)			SEA LEVEL PRESSURES (mbs)				
	HIGH	DATE	LOW	DATE	AMOUNT	DATE	SPD	DIR	DATE	HIGH	DATE	LOW	DATE
JAN	36.0	01-14-1989	14.3	01-08-1907	78.0	01-25-2006	18	S	01-24-2000	1022.2	01-18-1959	1001.3	01-01-1950
FEB	37.0	02-25-1927	16.3	02-07-1971	64.8	02-19-2009	18	NNW	02-11-1993	1022.0	02-01-1962	1003.2	02-07-2000
MAR	38.7	03-24-1921	16.7	03-05-1971	71.9	03-29-1938	19	NNW	03-20-1981	1020.8	03-30-1958	1002.0	03-13-1949
APR	39.9	04-12-1915	19.7	04-01-1973	195.0	04-18-1998	23	SE	04-21-1979	1019.0	04-07-1968	999.4	04-21-1956
MAY	39.6	05-12-1924	19.0	05-25-2004	722.6	05-27-2003	35	E	05-17-2008	1015.5	05-12-1960	986.9	05-23-1976
JUNE	38.7	06-05-1987	20.2	06-30-1978	306.0	06-21-1990	27	SE	06-22-2008	1016.0	06-06-1966	987.3	06-29-1964
JULY	38.2	07-07-1915	20.4	07-14-1911	376.8	07-08-1986	33	W	07-04-2001	1016.7	07-05-1951	984.6	07-22-2003
AUG	36.4	08-10-1906	19.0	08-03-1999	342.0	08-22-2003	35	SSE	08-24-1982	1016.0	08-18-1963	991.2	08-24-1982
SEP	36.6	09-21-1983	20.5	09-06-1984	374.3	09-14-2014	30	ESE	09-18-1998	1016.2	09-01-1971	985.7	09-14-1998
OCT	37.2	10-22-1990	19.5	10-26-1990	443.5	10-08-2009	56	WNW	10-11-1974	1017.7	10-27-1968	978.3	10-26-1978
NOV	36.9	11-20-2000	17.2	11-13-1905	229.1	11-17-1935	41	NNW	11-24-1981	1019.3	11-04-1958	983.4	11-24-1981
DEC	36.9	12-30-1978	15.2	12-14-1988	69.4	12-04-1936	27	N	12-02-2004	1021.0	12-08-1960	989.0	12-02-2004
ANNUAL	39.9	04-12-1915	14.3	01-08-1907	722.6	05-27-2003	56	WNW	10-11-1974	1022.2	01-18-1959	978.3	10-26-1978
Period of Record		1903 ·	- 2018		1903	- 2018		1966 - 2	2018		- 1949 -	- 2018	-

Figure 2-29: Frequencies of Tropical Cyclones in the Philippines



PAG-ASA Climate Projection

- ²⁵¹ In November 2011, Department of Environment and Natural Resources Environmental Management Bureau (DENR-EMB) released a memorandum circular numbered 005 (MC 2011-005), which mandates the inclusion of DRR and CCA in the Philippine EIS System, to "ensure that the project is resilient and that their environmental impact do not exacerbate natural hazards or climate change's effects on human or natural systems" (DENR-EMB, 2011). The circular aims to provide information on changes that may happen to the area based on projections made by the Philippine Atmospheric, Geophysical, and Astronomical services Administration (PAGASA). The projections include temperature increases, rainfall change, and frequency of extreme events in 2020 and 2050 under medium range emission scenario. The PAGASA projections are shown Figure 2-30 and Table 2-27.
- According to the PAGASA 2020 and 2050 projections, Region 1 will experience higher temperatures throughout the year. Higher temperatures will be experienced during the months of March, April, and May, according to the 2020 and 2050 projections, which is consistent with the observed baseline (1971-2000).
- ²⁵³ PAGASA also projects the amount of rainfall change in 2020 and 2050. The data shows that Pangasinan will experience greater rainfall from June to February, while less rainfall will be experienced in the remaining months.
- Frequency of extreme events under medium-range emission scenario will increase in 2020 and 2050. The number of days with temperatures above 35°C will increase from 1,280 days (1971-2000) to 2,265 days (2020 projections), and 3,728 days (2050 projections). Although there will be a rise in temperature, the number of dry days is anticipated to decrease from 8,303 days (1971-2000), to 6,443 (2020 projections), and 6,419 (2050 projections). Days with rainfall greater than 150mm is expected to increase from 2 days (1971-2000), to 13 days (2020 projections), and 20 days (2050 projections).
- ²⁵⁵ Considering these figures, water shortages may be the main impact of less rainfall and higher temperature. Appropriate measures such as tree planting and water conservation shall be employed during the construction and operation phases of the project to avoid any complications in the long run.

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

Brgy. Labayug, Sison, Pangasinan

	Table 2-27: PAGASA Climate Projection for 2020 and 2050											
Pangasinan	Observed Baseline (1971-2000)			Change in 2020 (2006-2035)				Change in 2050 (2036-2050)				
	DJF	MAM	JJA	SON	DJF	MAM	JJA	SON	DJF	MAM	JJA	SON
Temperature (C°)	25	27.4	26.9	26.4	0.9	1.1	0.9	1	2.2	2.2	1.8	2
Rainfall (mm)	19.4	298	1608.9	707.8	0.543	-0.6	0.061	0.059	0.011	-0.112	0.229	0.119
No. of days with max		1,	280		2,265			3,728				
temperature >35 C $^{\circ}$												
No of dry days	8,303			6,443				6,419				
No. of days with rainfall >	2			13			20					
200 mm												

2.3.1.2 Contribution to greenhouse gas emissions

- ²⁵⁶ Volumes 2 and 3 of the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories was used to quantify the greenhouse gas emissions of the proposed project.
- ²⁵⁷ To consider all potential GHG emission sources, the following emission scopes were considered:
 - Scope 1 Emission Sources: CO₂ emissions from clinker production
 - Scope 2 Emission Sources: Power requirement (to be purchased)
 - Scope 3 Emission Sources: Delivery Trucks, Heavy Equipment for Quarrying
- ²⁵⁸ The Tier 1 equation was used to compute for the potential Scope 1 CO₂ emissions due to the clinker production. **Table** 2-28 shows the input data, as well as the potential CO₂ emissions (Tons CO₂/year). The cement plant will produce 2,707,692 tons of cement per year, 60% of which is clinker. The emission factor of 0.52 ton CO₂/ton clinker was taken from Chapter 2, Volume 3 of the IPCC Guidelines. An estimated 844,800 tons of CO₂ will be emitted by the clinker production per year.

Tier 1 Equation for Greenhouse Gas Emissions from Cement Production

*Emissions*_{CO₂}

= Mass of Cement Produced x Clinker Fraction of Cement Type x Emission Factor for Clinker

Table 2-28: Scope 1 Potential Emission Data

	Input Data		
Mass of Cement Produced ¹ (Ton cement/year)	Clinker Fraction of Cement Type ¹ (Ton clinker/ton cement)	Emission Factor for Clinker ² (ton CO ₂ /ton clinker)	Potential Emissions (ton CO ₂ per year)
2,707,692	0.60	0.52	844,800

¹ – Data provided by NCC

² – Default Emission factor taken from Chapter 2, Volume 3 of Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas

The emission factor from the World Bank Greenhouse Gas Emissions Inventory Management Plan for Internal Business Operations (2010) was used to compute for the Scope 2 Emission Sources. The given country-based emission factor for the Philippines is 989.34 lb CO₂/MWh, which is equal to 0.45 kg CO₂/kWh. According to NCC, the power requirement of the upgraded cement facility is 190,000,000 kWh per year. Given these data, the Scope 2 CO₂ emissions from the cement grinding facility is 85,500,000 kg CO₂ per year

Equation for Estimating Potential Scope 2 Emissions

 $Emissions_{CO_2 Purchased Electricity} = Power Requirement x Emission Factor$

Table 2-29: Scope 2 Potential Emissions

Input	Potential Emissions per	
Power Requirement ¹ (kWh) per year	Emission Factor ² (kg CO ₂ /kWh)	year (kg CO₂/year)
190,000,000	0.45	85,500,000
¹ – Data provided by NCC		

¹ – Data provided by NCC

² – Emission Factor taken from taken from World Bank Greenhouse Gas Emissions Inventory Management Plan for Internal Business Operations (2010)

Volume 2, Chapter 3 of the IPCC Guidelines was used to estimate Scope 3 emissions. Tier 1 equation for road transportation was used to estimate emissions from the diesel-powered heavy equipment used for quarrying.

- ²⁶¹ To compute for the Scope 3 emissions of NCC, it is important to know the amount of fuel consumed by the company. NCC consumes about 1,594,512 L of diesel fuel to extract a combined 3.39 MMTPY of limestone and shale per year. NCC anticipates the need for an estimated 10.05 MMTPY of limestone and shale to sustain the operations of NCC and SMNCI. With the increase of extraction capacity, fuel consumption is also expected to increase to about 2,132,680 L of diesel fuel per year. It can also be assumed that there are about 100 delivery vehicles that serve the company per day.
- ²⁶² The fuel consumption of the quarry equipment is assumed to be 0.2 TJ/day, while the estimated fuel consumption of 100 delivery trucks was 0.13 TJ/day. The data shows that the project may potentially emit an estimated 8,295,345 kg of CO₂ per year.

Equation for Estimating CO₂ Emissions from Road Transport

$Emissions_{CO_2} = Fuel Consumed x Emission Factor$

Table 2-30: Phase 1, Scope 3 Potential Emission Data

POTENTIAL	INPU	IT DATA	POTENTIAL EMISSIONS PER
EMISSION SOURCE	Fuel Consumed ¹ (TJ/day)	Emission Factor ² (kg CO ₂ /TJ)	YEAR (kg CO ₂ /year)
Quarry Equipment	0.2	74,100	5,409,300
100 Delivery Trucks	0.13		3,516,045
		8,925,345	

¹ – Power consumption data provided by NCC

² – Emission factor taken from Chapter 2, Volume 2 of Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas

2.3.1.3 Emission Inventory

- ²⁶³ Chapter 11.6 of the Fifth Edition of US EPA AP-42 Compilation of Air Pollutant Emission Factors was used to estimate the particulate and gaseous emissions from the NCC cement plant.
- ²⁶⁴ **Table** 2-31 lists the particulate emission sources from the cement plant, as well as the corresponding US EPA AP-42 emission factors (kg/ton) and the estimated emissions (kg/year). The highest possible estimated particulate emissions is 689,528 kg/year.
- ²⁶⁵ The cement plant will also produce gaseous emissions from the kiln and the preheater/precalciner (**Table** 2-32). It is expected that the cement plant will produce 9,504,000 kg SO₂, 5,280,000 kg NO_x, and 193,600 kg CO per year.

	able 2-31. Estimateu Pa		
	Emission Factor (kg/ton)	Total Output (tons/year)	Estimated Emissions (kg/year)
		(tons/year)	(Kg/ year)
Primary limestone crushing with fabric filter	0.0005	2,208,909	1,104
Primary limestone screening with fabric filter	0.0001	2,208,909	221

Table 2-31: Estimated Particulate Emissions

	Emission Factor (kg/ton)	Total Output (tons/year)	Estimated Emissions (kg/year)
Limestone transfer with fabric filter	0.000002	2,208,909	3
Secondary limestone screening and crushing	0.0002	2,208,909	353
Raw mill with fabric filter	0.0062	2,904,290	18,007
Raw mill feed belt with fabric filter	0.0016	2,904,290	4,647
Raw mill weigh hopper with fabric filter	0.0100	2,904,290	29,043
Raw mill air separator with fabric filter	0.0160	2,904,290	46,469
Dry process kiln with fabric filter	0.1000	1,760,000	176,000
Preheater kiln with fabric filter	0.1300	1,760,000	228,800
Clinker cooler with fabric filter	0.0680	1,760,000	119,680
Finish grinding mill with fabric filter	0.0042	2,707,692	11,372
Finish grinding mill feed belt fabric filter	0.0012	2,707,692	3,249
Finish grinding mill weigh hopper fabric filter	0.0047	2,707,692	12,726
Finish grinding mill air separator fabric filter	0.0140	2,707,692	37,908
			689,582

Table 2-32: Estimated Gaseous Emissions

	Output (tons/year)	SO ₂		NOx		СО	
		EF (kg/ton)	EE (kg/year)	EF (kg/ton)	EE (kg/year)	EF (kg/ton)	EE (kg/year)
Kiln	1,760,000	4.9	8,624,000	3.0	5,280,000	0.11	193,600
Preheater/ precalciner with spray tower	1,760,000	0.5	880,000	ND	-	ND	-
Total			9,504,000		5,280,000		193,600
EF - Emission Factor							
EE - Estimated Emissions							

2.3.2 Air Quality (& Noise)

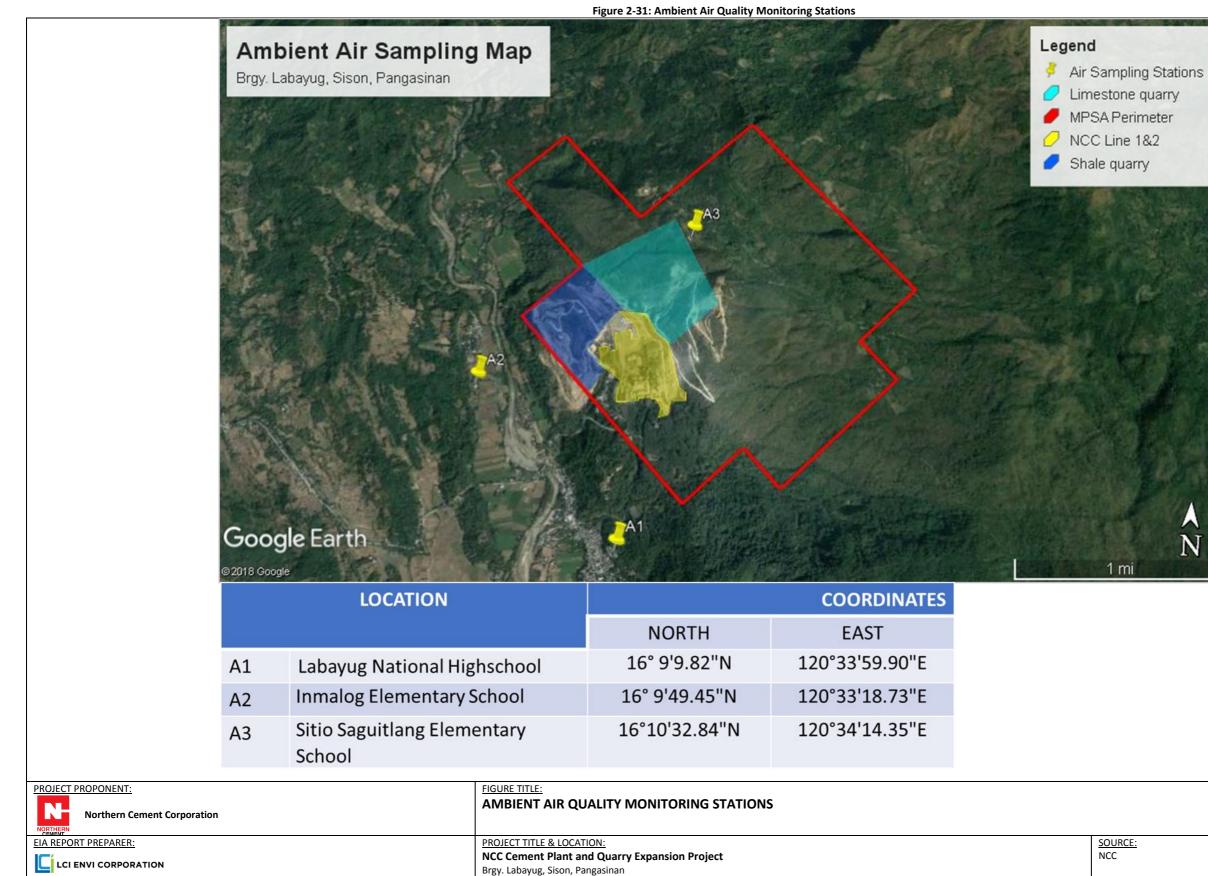
2.3.2.1 Degradation of air quality

Ambient Air Quality

- Presented in the following are the results of the ambient air quality monitoring done by NCC over the last 4 years (2015-2018), until the first quarter of 2019. They are currently monitoring total suspended solids (TSP) in Barangay Labayug, Barangay Inmalog, and Sitio Saguitlang (Figure 2-31). As shown in Figure 2-32, the TSP in the area is consistently below the DENR standard of 300 µg/Ncm.
- ²⁶⁷ Ambient air quality sampling was also conducted last September 19-21, 2016 and July 25, 2019 in the monitoring stations. The results of the ambient air quality test are shown in **Table** 2-33. All parameters measured from the three monitoring stations are within the national ambient air quality standards.

	Table 2-33: Amplent A	Air Quality Laboratory Res	uits (201	6, 2019)			
	Location	Date of Sampling	TSP	As	Cd	Cr⁺ ⁶	Hg
A1	Labayug National Highschool	Sept 19,2016	85.5	ND	ND	ND	0.00003
A2	Inmalog Elementary School	Sept 21,2016	46.4	ND	ND	ND	0.00004
A3	Sitio Saguitlang Elementary School	Sept 20, 2016	56.0	ND	ND	ND	0.00003
NAA	AQS (μg/Ncm)		300	0.02	0.01	-	-

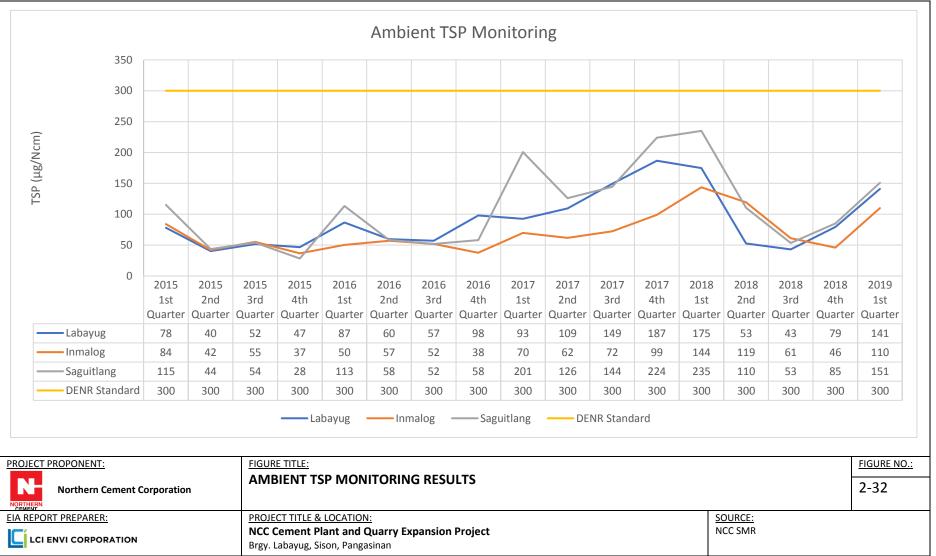
Table 2-33: Ambient Air Quality Laboratory Results (2016, 2019)

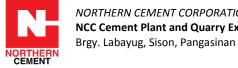

	Location	Date of Sampling	PM ₁₀	NO ₂	SO ₂	Pb
A1	Labayug National Highschool	July 25, 2019	7.2	ND	ND	ND
A2	Inmalog Elementary School	July 25, 2019	10.1	ND	25.5	ND
A3	Sitio Saguitlang Elementary School	July 25, 2019	15.0	ND	ND	ND
NAAQ	δ (μg/Ncm)	200	260	340	20	

²⁶⁸ To minimize air pollution in the area, NCC has implemented pollution control management such as regular maintenance of vehicles and monitoring of ambient air quality. To minimize dust, unnecessary earth movement is prevented. Also, regular watering of the areas that generate dust is also being done by the proponent. It is seen to it that long exposure of excavated soil piles is avoided. Pollution control devices such as electrostatic precipitators, bag filters, dust collectors, and ventilations are also installed within the plant site.

Source Emissions

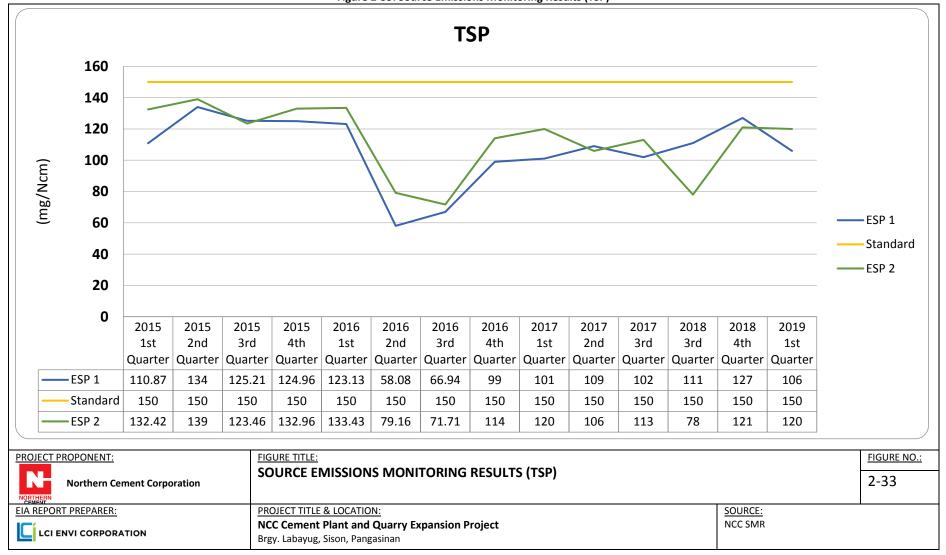
- ²⁶⁹ Air emissions from the kilns of NCC pass through electrostatic precipitators before the air is released. Parameters recorded are TSP, NO_x, SO₂, and CO. All parameters are consistently below source specific emissions standards (**Figure** 2-33). The monitoring method employed by NCC is Continuous Opacity Monitoring Systems (COMS).
- ²⁷⁰ It was also observed that there was a sudden spike of NO₂ emission (Figure 2-33c) from 4th quarter of 2016 until 3rd quarter of 2017, although the emission was still within the limit. This was due to the commissioning and process adjustment made on the new FISmidth Burner pipe as a replacement of the heavily worn-out old burner. An intense and strong flame momentum which resulted to higher NO₂ Emission. Adjustment was made in the 2nd half of 2017 on the rawmix design and burner pipe settings to lower temperature and manageable flame momentum & shape which resulted in better clinker product, lower NOx emission and lower heat rate.


Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS


	FIGURE NO.:
	2-31
<u>CE:</u>	

Environmental Performance Report and Management Plan ASSESSMENT OF ENVIRONMENTAL IMPACTS

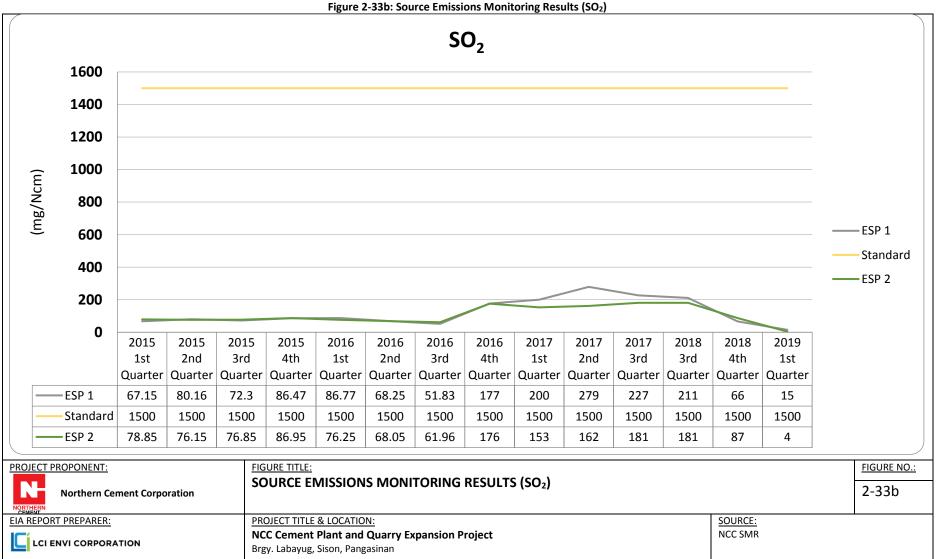
SECTION 2


Figure 2-32: Ambient TSP Monitoring Results

NORTHERN CEMENT CORPORATION

NCC Cement Plant and Quarry Expansion Project

Figure 2-33: Source Emissions Monitoring Results (TSP)


NORTHERN CEMENT

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan

						Figure	2-33a: Sou	rce Emissi	ons Monit	oring Res	ults (CO)					
								С	0							
	600															
	500															
	400															
(mg/Ncm)	300															
(m	200										\square	\sim		_		ESP 1 Standard
	100							\langle					\checkmark			ESP 2
	0	2045	2045	2015	2015	204.6	204.6	2016	2016	2017	2017	2017	2010	2010	2010	
		2015 1st Quarter	2015 2nd Quarter	2015 3rd	2015 4th Quarter	2016 1st	2016 2nd Quarter	2016 3rd Quarter	2016 4th	2017 1st	2017 2nd Quarter	2017 3rd Quarter	2018 3rd Quarter	2018 4th Quarter	2019 1st Ouarter	
	ESP 1	43.32	45.15	40	40	40	40	128	165	192	181	216	198	144	184	
	Standard	500	500	500	500	500	500	500	500	500	500	500	500	500	500	
	ESP 2	40.27	48.6	42	42	42	42	92.38	106	133	212	202	144	200	220	
PROJECT	ROJECT PROPONENT: FIGURE TITLE:										FIGURE NO.:					
Northern Cement Corporation							5 (CO)						2-33a			
CEMENT PROJECT TITLE & LOCATION: SOURCE: Lia REPORT PREPARER: NCC Cement Plant and Quarry Expansion Project NCC SMR Brgy. Labayug, Sison, Pangasinan Brgy. Labayug, Sison, Pangasinan NCC SMR									1							

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project

						0				Shing Nest	(· · · · /						
								Ν	02								
	1200																
	1000 800																
(
(mg/Ncm)	600											\wedge					
L)	400															_	– ESP 1 – Standard
	200																ESP 2
	0	2015	2015	2015	2015	2016	2016	2016	2016	2017	2017	2017	2019	2019	2019		
		2015 1st	2015 2nd	2015 3rd	2015 4th	2016 1st	2016 2nd	2016 3rd	2016 4th	2017 1st	2017 2nd	2017 3rd	2018 3rd	2018 4th	2019 1st		
		Quarter		Quarter									Quarter				
	ESP 1	64.58	67.95	60.61	72.14	76.25	57.64	61.17	262	210	226	527	435	319	139		
	Standard	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000		
	ESP 2	71.48	67.58	56.26	62.74	70.35	62.31	51.73	289	356	311	636	468	327	73		
					1					1							
	PROJECT PROPONENT: FIGURE TITLE:											FIGURE NO.:					
NORTHERN	Northern Cement Corporation										2-33c						
EIA REPC	ORT PREPARER:				OJECT TITLE									SOURCE:			
	ENVI CORPORA	TION			CC Cement			pansion P	roject					NCC SMR			
	Brgy. Labayug, Sison, Pangasinan																

Figure 2-33c: Source Emissions Monitoring Results (NO_x)

Air Dispersion Model

- A steady state Gaussian plume dispersion model was applied to evaluate the air pollution impact on the local air quality from the quarry and cement plant operations of Northern Cement Corporation and San Miguel Northern Cement, Inc. The modeling domain that contains the study area is 10 km by 10 km grid centered on the stack locations (Lat 16.165000°, Lon 120.568319°) as shown in **Figure** 2-34.
- ²⁷² The primary air pollutants in the study area will be particulates emitted from the cement line production and the quarrying sites. Gaseous air pollutants will also include Carbon Monoxide (CO), Nitrogen Dioxide (NO₂) and Sulfur Dioxide (SO₂) primarily from cement line production. Heavy metals, such as arsenic, cadmium, cobalt, copper, mercury, nickel, antimony, and zinc are also expected to be emitted by the cement plant due to the use of alternative fuels.
- AERMOD, the US EPA's recommended model for most small scale regulatory applications, was then used for predicting the ground-level concentrations (GLC) of the said air pollutants. AERMOD, also known as the AERMIC (American Meteorological Society/EPA Regulatory Improvement Committee) Regulatory Model, is an advanced next-generation air dispersion model that incorporates concepts such as planetary boundary layer (PBL) theory and advanced methods for handling complex terrain. Such model has undergone thorough model evaluation procedures yielding reasonably accurate modeling results provided that the appropriate input data are used.
- ²⁷⁴ In this first level of analysis, it is assumed that the pollutants do not undergo any physico-chemical transformations and that there is no pollutant removal by dry deposition. The emission rate of the pollutants from a stack (point source) in a reasonable worst-case scenario was estimated based from the following equation:

Emission rate (g/s) = Concentration (mg/Nm³) x Stack volumetric flowrate (Nm³/s) x 10^{-3}

- The heavy metals (As, Cd, Co, Cu, Hg, Ni, Sb, and Zn) from the stack in the cement line production are listed on **Table 2**-34. The point sources of these pollutants will be primarily from the kiln. Note that these maximum concentrations are based on the limits indicated in the National Emissions Standards for Source Specific Air Pollutants (NESSAP) (Table 2, Sect.1, Rule XXV of DAO 2000-81). Concentrations from the source monitoring data of NCC, as well as typical concentrations from the prospective equipment of SMNCI were also considered.
- As for particulates, typical concentrations from equipment of NCC and the prospective equipment of SMNCI were used (**Table** 2-34). It is also assumed that sixty five percent of the Total Suspended Particulates (TSP) will be PM_{10} for the worst-case scenario. Another potential source of particulates as fugitive dust is from the crushing plant, finish mill, and roads. The quarry is another major source of TSP. As in most model runs, the emission rate of area source used in the report was taken from EPA AP-42. The value was calculated based on emission factor from quarries and massive drilling and construction sites, which is $1 \times 10^{-4} \text{ g/s-m}^2$.

		Table 2-34: Concentrations		
Pollutant	Max Concentrations (mg/Ncm)	Concentrations specifications of SMNCI equipment (mg/Ncm)	Concentration (mg/Ncm) From SMR –	
			ESP 1	ESP 2
TSP		8.2	106	120
PM10		5.3	70	103
СО		40.6	184	220
NO ₂		302.1	139	73
SO ₂		7.9	15	4
As	10			
Cd	10			
Sb	10			
Pb	10			

Table 2-34: Concentrations of Pollutants

- As suggested by Emission Inventory Improvement Program (EIIP) of the US EPA, there are several activities that have impacts on the emission rates in quarry. Some activities that were considered during quarrying are blasting, truck loading, transport through haul roads, and truck unloading. The fugitive dust emissions from crushing plant and quarry site are modeled as a 30m-length volume source and a 10m-radius circular area source, respectively.
- ²⁷⁸ The proposed facility is in an area where regional meteorological condition and terrain would have a significant effect on the predicted ground-level concentration (GLC) of its air emissions. The meteorological data used for the model was derived from a 3-year mesoscale regional meteorological model (MM5) for the said area. The summarized wind frequency data for the three-year MM5 data as shown in the wind rose diagram (Figure 2-35) indicates that the prevailing wind direction in the area is in northeasterly, southwesterly, and southeasterly sectors with a wind speed range between two to eleven meters per second. The MM5 data was processed by AERMET, the meteorology data processor for AERMOD. The terrain elevation data was obtained from high resolution database of Earth's topography collected during the Shuttle Radar Topography Mission (SRTM). The elevation data was then processed (Figure 2-36) by AERMAP, the terrain preprocessor for AERMOD air dispersion study, to calculate the hill height scale and elevations for receptors within the model domain of 10 km x 10 km grid with a 500 m resolution of the uniform Cartesian grid receptor.
- ²⁷⁹ On the other hand, physical stack parameters of the identified point sources used in the model including the stack volumetric flowrate are summarized in **Table** 2-35. The volumetric flow rate is based on typical values of the plant equipment.

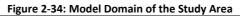
Point source	Stack height (m)	Stack Diameter (m)	Exit Stack Gas Temp (K)	Actual volumetric flow rate (m ³ /min)	Corrected volumetric flow rate (Nm ³ /s)	Number of Stacks	Mitigating Measures
Kiln	46	4.5	393.15	4,236.19	52.2	NCC – 2	ESP
Kiln	60	3.5	423		195.7	SMNCI – 2	Bag Filters

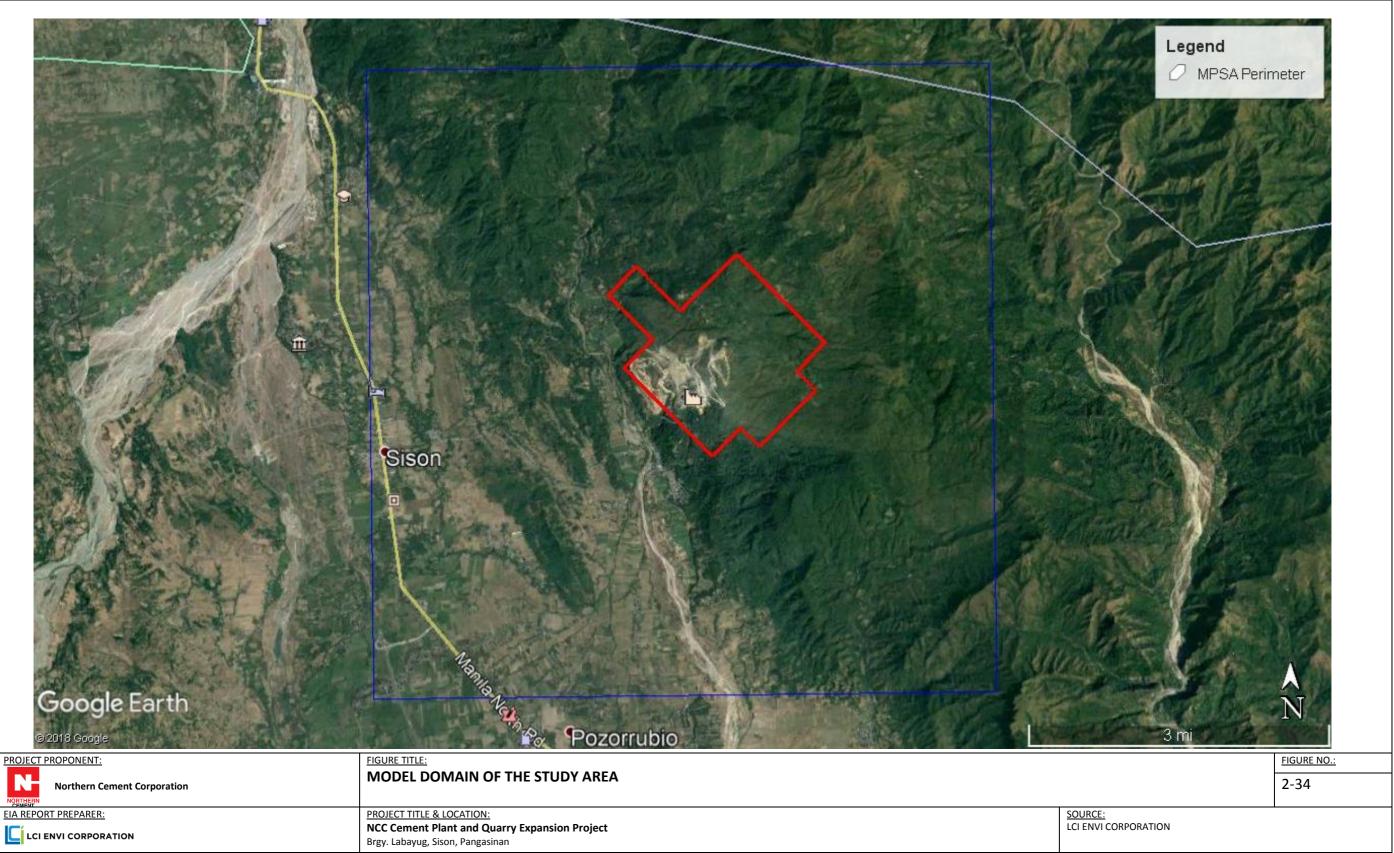
Table 2-35: Description of the stacks from the proposed project (from SMR 1Q2019)

²⁸⁰ The estimated emission rates in g/s are shown in **Table** 2-36.

Parameters

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

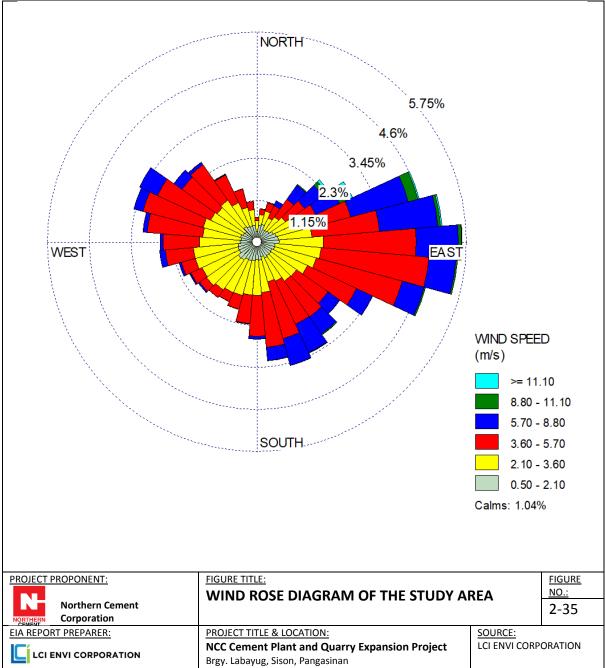

Quarry

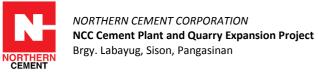

Roads

		Tab	le 2-36: Emissio	on rates (g/s) from	n the Cement Pla	nt and Quar	ry Operatior	IS		
Kiln	Kiln	Kiln	Kiln	Limestone	Limestone	Finish	Finish	Finish	Finish	Quarry
(NCC	(NCC	(SMNCI	(SMNCI	Crushing 1	Crushing 2	Mill 1	Mill 2	Mill 3	Mill 4	Areas
Line 1)	Line 2)	Line A)	Line B)	(Shared)	(Shared)	(NCC	(NCC	(SMNCI	(SMNCI	(g/s-m²)
						Line 1)	Line 2)	Line A)	Line B)	

							Line 1)	Line 2)	Line A)	Line B)		
TSP	7.9	7.9	11.1	11.1	0.05	0.05	1.3	0.9	1.8	1.8	1x10 ⁻⁴	2.7
NO ₂	10.3	5.4	37.3	37.3								
SO ₂	1.1	0.3	52.2	52.2								
CO	13.7	16.4	37.3	37.3								
PM ₁₀	5.2	7.6	7.3	7.3							6.5x10 ⁻⁶	0.7
As	0.7	0.7	0.7	0.7								
Cd	0.7	0.7	0.7	0.7								
Sb	0.7	0.7	0.7	0.7								
Pb	0.7	0.7	0.7	0.7								







Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

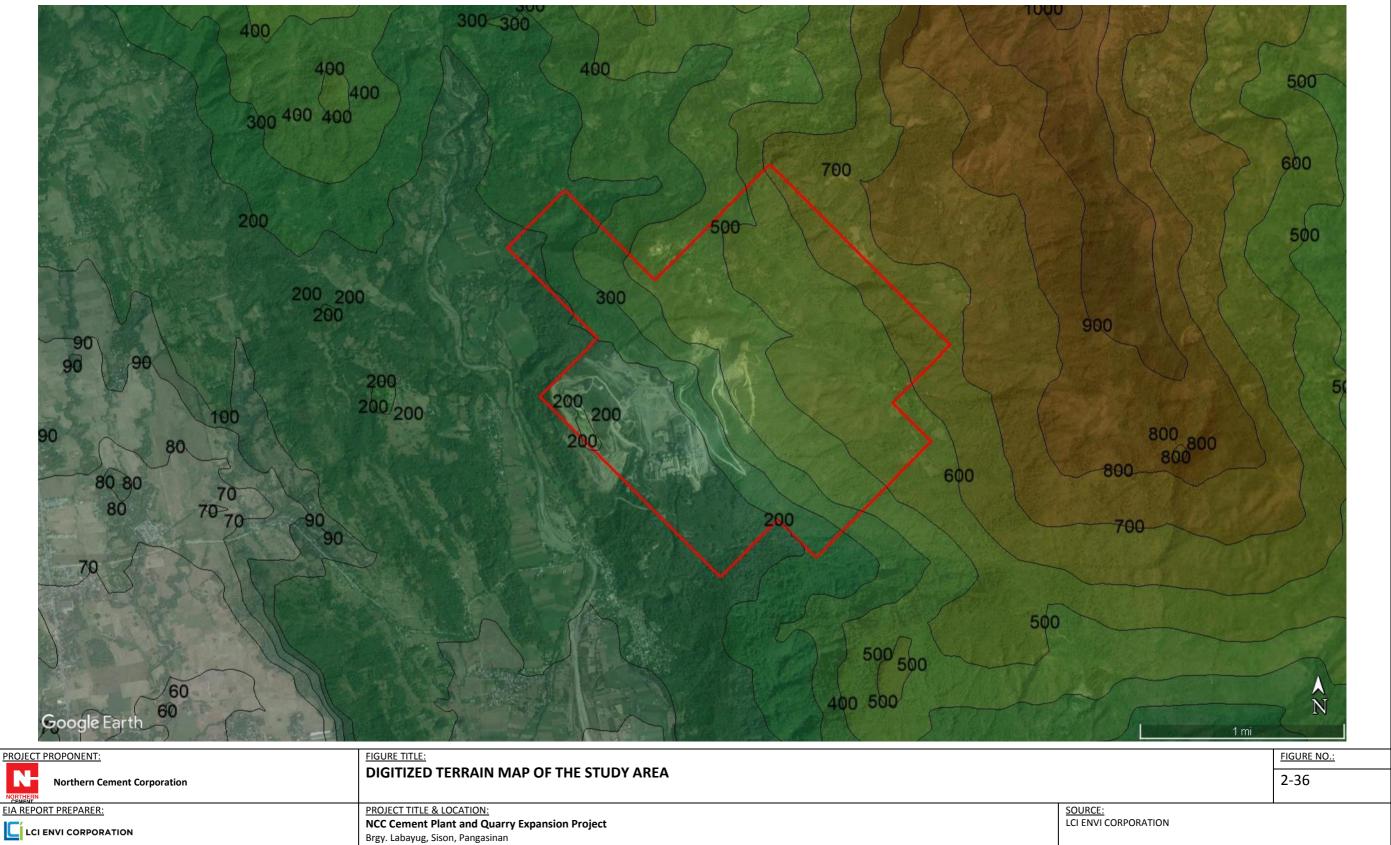
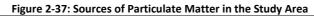


Figure 2-36: Digitized Terrain Map of the Study Area

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS


Air Dispersion Modeling of Suspended Particulates

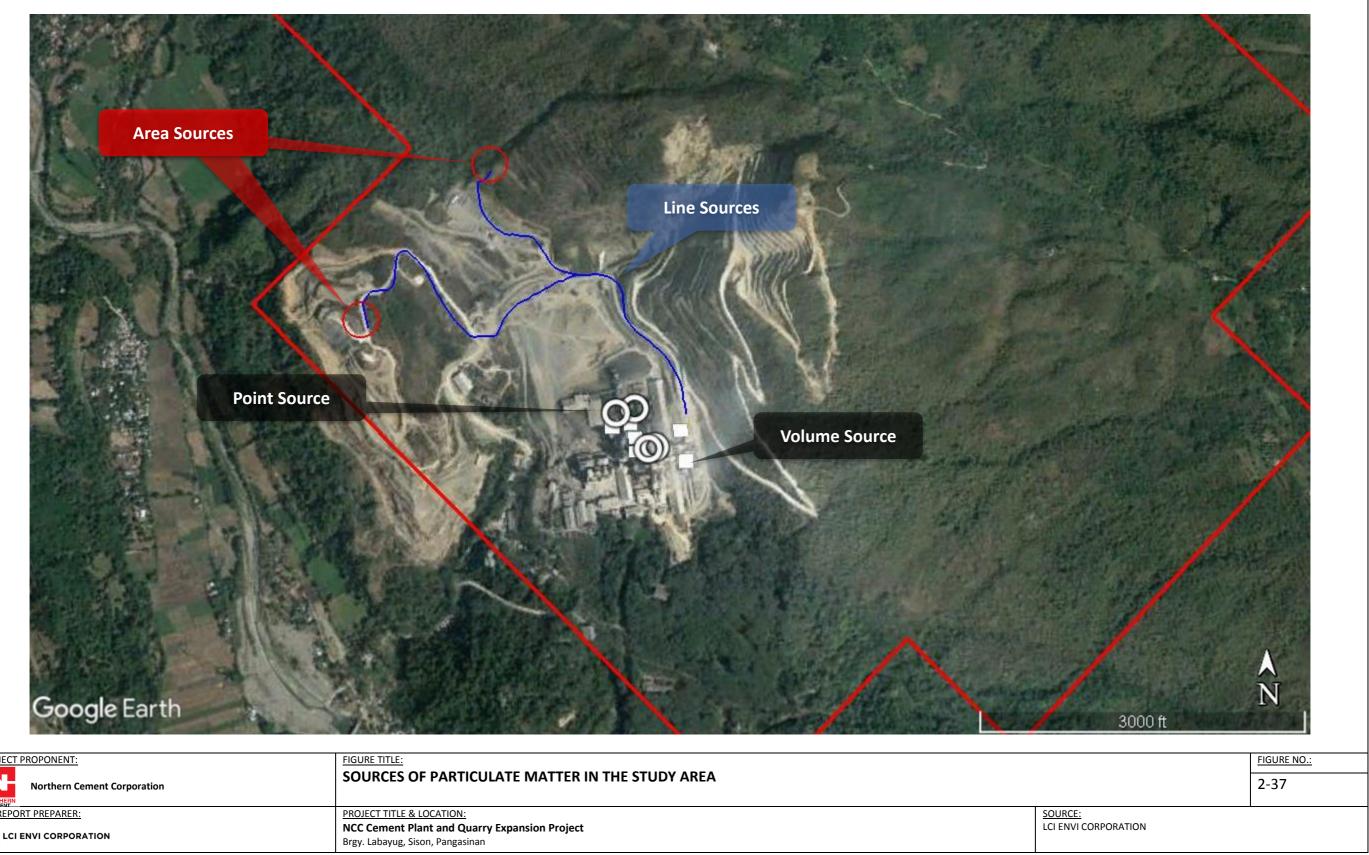
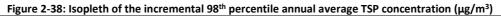

²⁸¹ The following sources were considered for the air dispersion modeling of particulates:

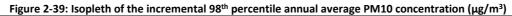
Table 2-37: Suspended Particulates Sources								
Sources	Туре	Capacity	Company					
Cement Line 1	Point Source	1.28 MMTPY Clinker	NCC					
Cement Line 2	Point Source	1.76 MMTPY Clinker	NCC					
Cement Line A	Point Source	1.84 MMTPY Clinker	SMNCI					
Cement Line B	Point Source	1.84 MMTPY Clinker	SMNCI					
Limestone Crushing	Volume Source	1,400 TPH	NCC/SMNCI					
Finish Mill Line 1	Volume Source	190 TPH	NCC					
Finish Mill Line 2	Volume Source	130 TPH	NCC					
Finish Mill Line A	Volume Source	270 TPH	SMNCI					
Finish Mill Line B	Volume Source	270 TPH	SMNCI					
Limestone/Shale	Area Source	8.27 MMPTY Limestone	NCC					
Quarry		1.83 MMPTYH Shale						
Quarry Roads	Line Volume Source	4 km	NCC					

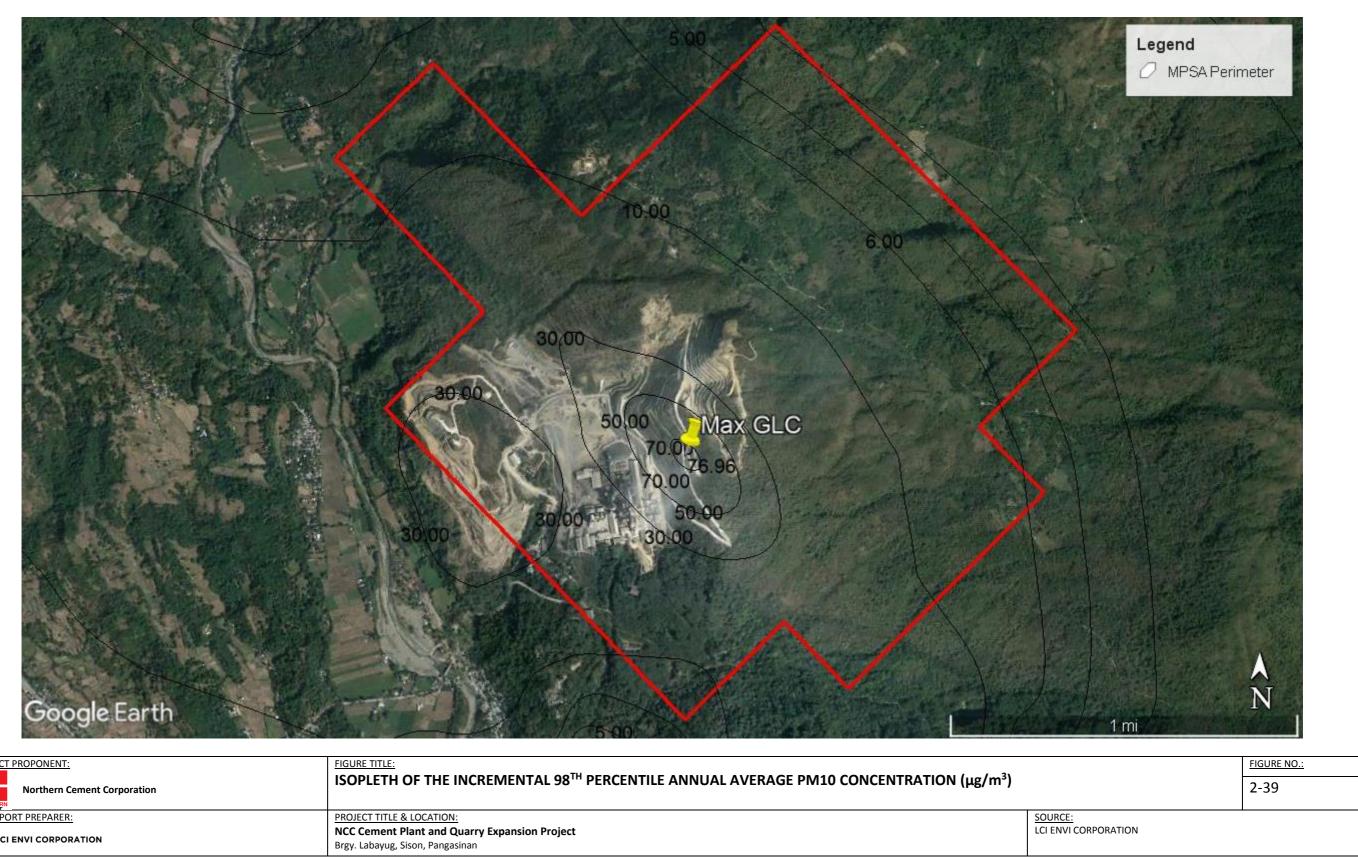
Table 2-37: Suspended Particulates Sources

- ²⁸² **Figure** 2-37 shows the estimated location of the point, volume, line, or area source of particulates from the stacks, crushing operation, and quarrying area.
- Table 2-39 summarizes the modeling results for each scenario describing the predicted incremental maximum ground level concentration (GLC) of particulates at different averaging times. Moreover, the isopleths for the long-term annual incremental GLC of the said criteria pollutant are also shown in Figure 2-37 to Figure 2-39. It should be noted that these concentrations are the predicted maximum increase in the existing ambient air levels.
- The predicted concentrations of emissions from the sources exceeded the National Ambient Air Quality Guideline Values (NAAQGV) stipulated in DAO 2000-81, the Implementing Rules and Regulation (IRR) of RA 8749, the Philippine Clean Air Act (CAA) of 1999. Assuming the worst-case scenario, indications suggest the uncontrolled fugitive dust emissions from the quarry site have significant impact on the air quality of the study area in particular to suspended particulates. Figure 2-37 to Figure 2-39 suggest the major impact of the plume is in northeasterly direction as influenced by the predominant wind condition and terrain in the area.
- ²⁸⁵ The proponent must install and operate "Best and Available Control Technology" (BACT) including the continuous opacity monitoring system (COMS) to reduce the emission rate of particulates and ensure that the impact of the operation will not be detrimental to air quality of the area. Table 2-38 also presents the predicted scenarios if the emissions are controlled using different air pollution control devices such as bag filters. Assuming that the equipment used are at 90% efficiency, all parameters in all scenarios will be well below the standards stipulated in DAO 2000-81.



PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: SOURCES OF PARTICULATE MATTER IN THE STUDY AREA	
EIA REPORT PREPARER:		<u>SOURCE:</u> LCI ENVI CO


Table 2-38: Predicted incremental maximum GLC of particulates in the study area


Sc (cemer		ontrolled Uncontrolled enario Scenario nt plant and (road) uarry)		nario	Controlled Scenario (90% efficiency) + Road (Uncontrolled)		NAAQSGV		UTM East	UTM North
	TSP Max GLC ^a (μg/m ³)	PM ₁₀ Max GLC ^a (μg/m ³)	TSP Max GLC ^a (μg/m ³)	PM ₁₀ Max GLC ^a (μg/m ³)	TSP Max GLC ^a (μg/m ³)	PM ₁₀ Max GLC ^a (μg/m ³)	TSP (μg/m ³)	PM ₁₀ (μg/m³)		
1-hr	779	76.96	47.43	30.8	55.1	38.4	300	200	239801.15	1788965.14
24-hr	226	51.7	20.6	13.39	43.2	18.59	230	150	239801.15	1788965.14
Annual	88.9	11.2	13.8	8.97	22.7	10.1	90	60	239801.15	1788965.14

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE TSP CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION:	SOURCE:
	NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	LCI ENVI C

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE PM10 CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: LCI ENVI

Air Dispersion Modeling of Gaseous Emissions

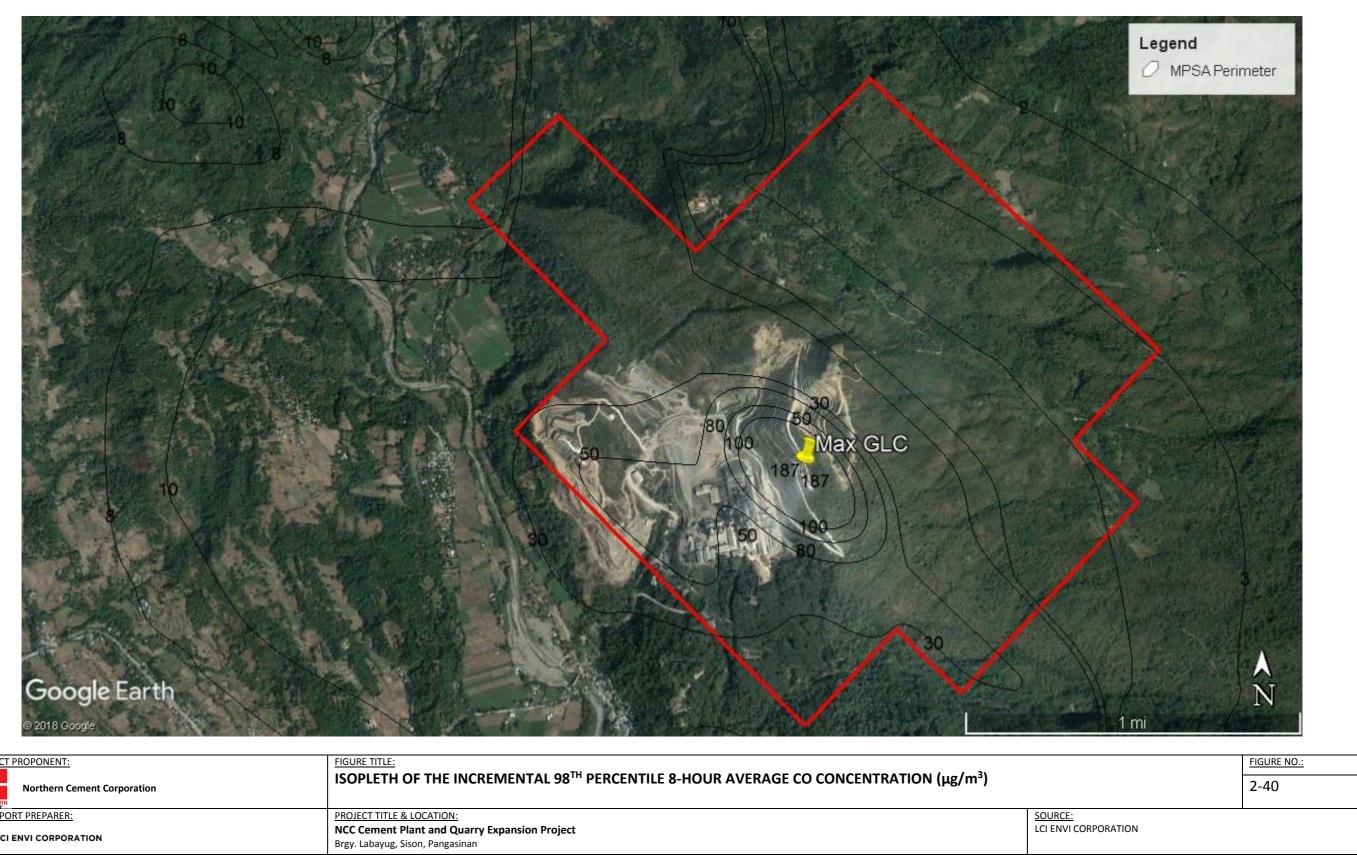
- ²⁸⁶ Operation of gaseous emissions sources, which are the kiln and the coal mill, was considered for the air dispersion modeling of CO, NO₂, and SO₂.
- Table 2-39 summarizes the modeling results for each scenario describing the predicted incremental maximum ground level concentration (GLC) of these criteria air pollutants at different averaging time. The isopleths for the 24-hr average GLC of CO and annual average GLC of SO₂, and NO₂ are also shown in Figure 2-40, Figure 2-41, and Figure 2-42. It should be noted that these concentrations are the predicted maximum increase in the existing ambient air levels.

Pollutant	Averaging time	Maximum GLC ^d	UTM East	UTM North	CAA Standards
		(µg/m³)	(m)	(m)	(µg/m³)
СО	1-hr	101	240300.07	1788965.74	35,000ª
	8-hr	187	240300.07	1788965.74	10,000 ^b
NO ₂	1-hr	64.8	240300.07	1788965.74	260a
	24-hr	32.0	240300.07	1788965.74	150b
	Annual	7.9	240300.07	1788965.74	40c
SO ₂	1-hr	4.8	240300.07	1788965.74	340a
	24-hr	4.8	240300.07	1788965.74	180b
	Annual	0.8	240300.07	1788965.74	80b

Table 2-39: Predicted incremental	l maximum GLC of	gaseous emissions in the study	area
Table 2-33. Freuitieu ilitrelitelita		gaseous ennissions in the study	area

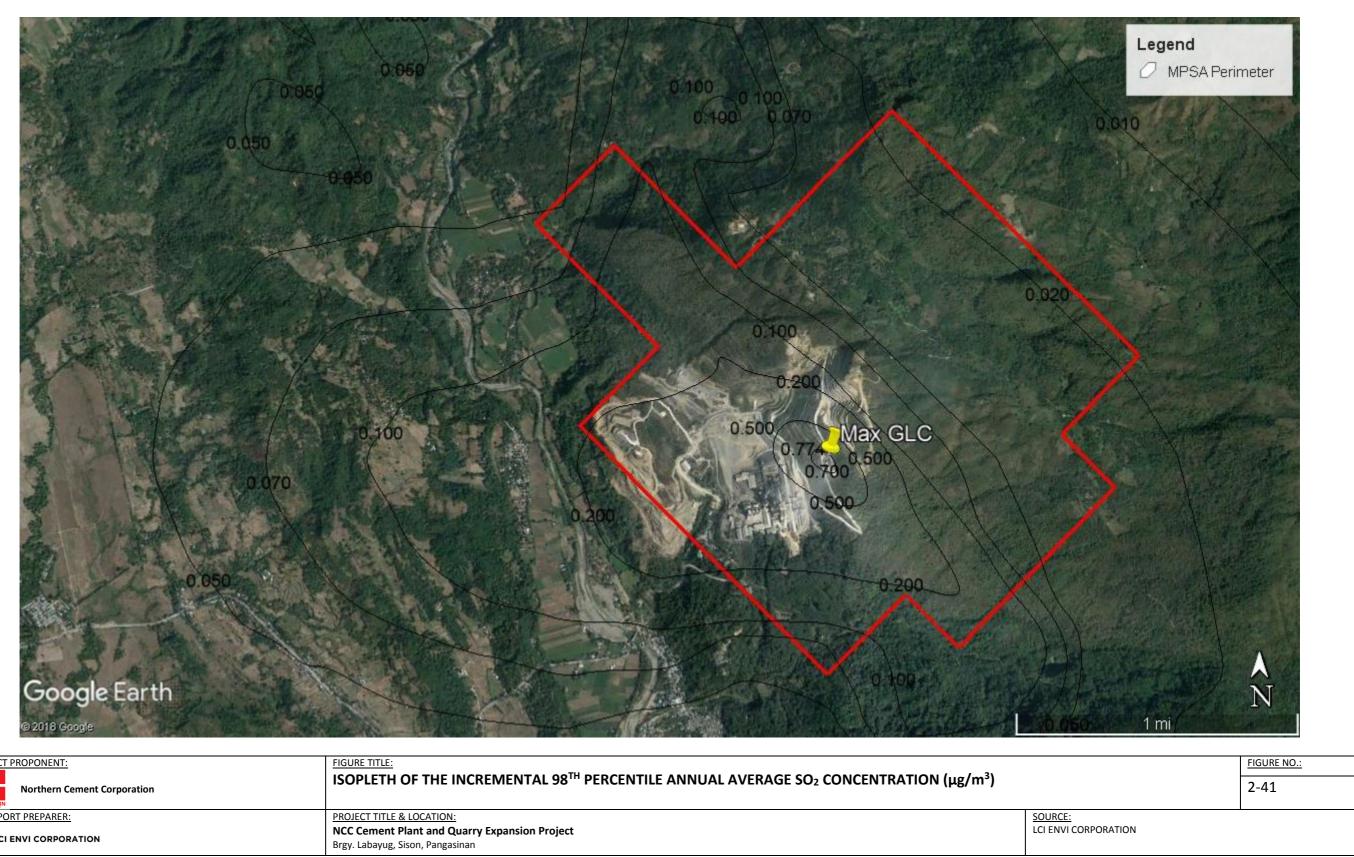
^a Section 1, Rule XXVI Source Specific Ambient Air Quality Standards (DAO 2000-81) ^b Section 1, Rule VII National Air Quality (DAO 2000-81)

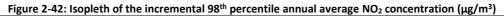
° WHO guidelines

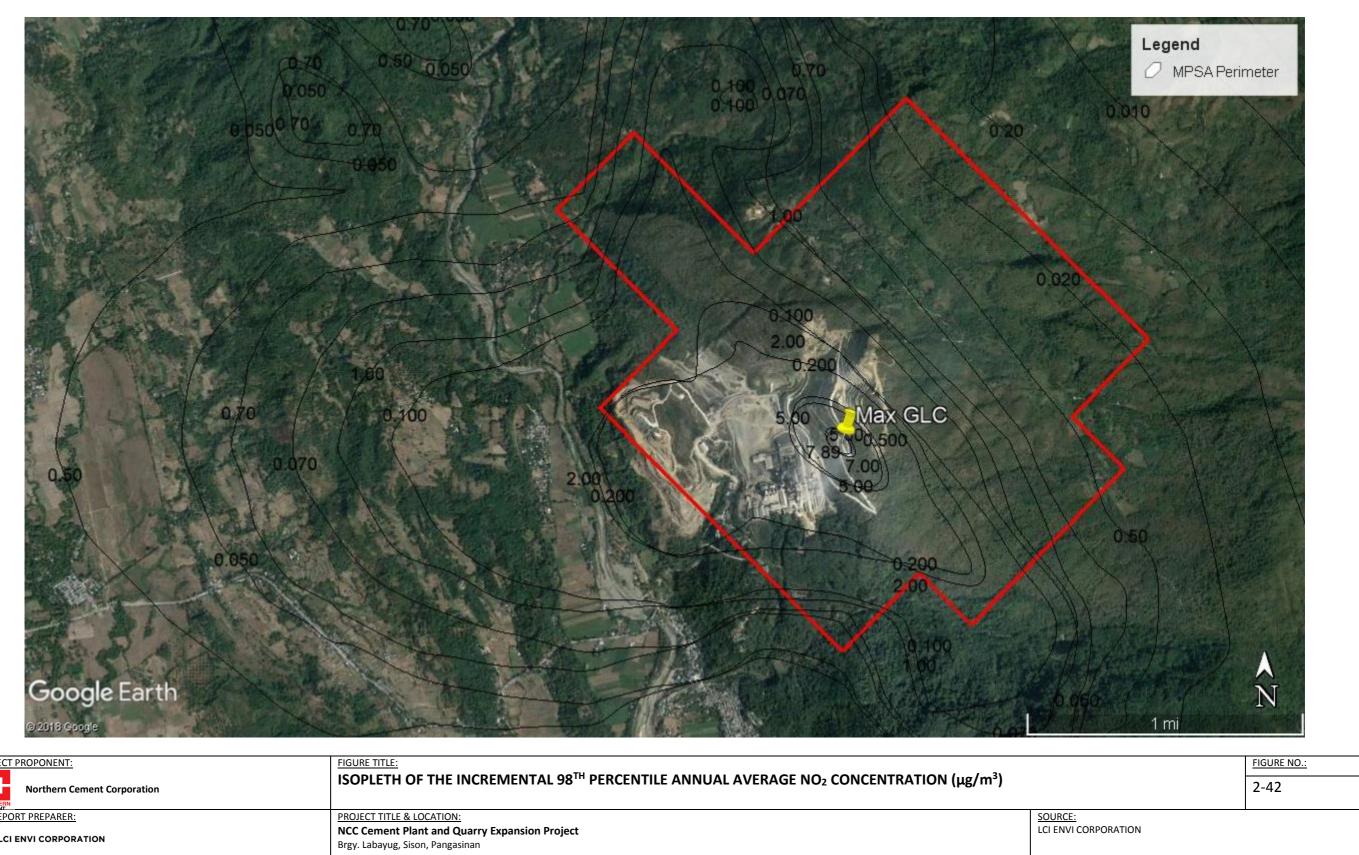

^d 98th percentile value

- Results from both scenarios indicate that these predicted incremental GLC of CO, NO₂, and SO₂ are well below the prescribed limit stipulated in DAO 2000-81, the Implementing Rules and Regulation (IRR) of RA 8749, the Philippine Clean Air Act (CAA) of 1999.
- ²⁸⁹ The pattern of 98th percentile isopleth shown in **Figure** 2-40 to **Figure** 2-42 also suggests the impact of the plume is in northeasterly direction as influenced by the predominant wind condition in the area. The predicted maximum GLCs of pollutants were also observed to be within the MPSA.
- ²⁹⁰ The existing operation of the cement plant does not warrant control devices for CO, NO₂, and SO₂. It was anticipated that the environmental limits of these gaseous pollutants will not be exceeded as the sources are minimal. As predicted by the model GLCs are within CAA Standards.
- ²⁹¹ To ensure that pollutant concentrations in the area are kept below standards, **Table** 2-40 lists the best available control technology (BACT) that should be applied by NCC and SMNCI.

Table 2-40: Best Available Control Technology (BACT) for each pollutant


Pollutant	BACT
SO ₂	Highly alkaline conditions in cement kiln is maintained to enable it to capture up to 95% of the possible SO ₂ emissions
СО	Ensures complete combustion to reduce CO emissions by regular monitoring and continuous auto regulation of fuel and air by automatic combustion control system
NO ₂	Reduced through stable kiln operation, as this reduces long term NO ₂ emissions.




PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE 8-HOUR AVERAGE CO CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	<u>SOURCE:</u> LCI ENVI C

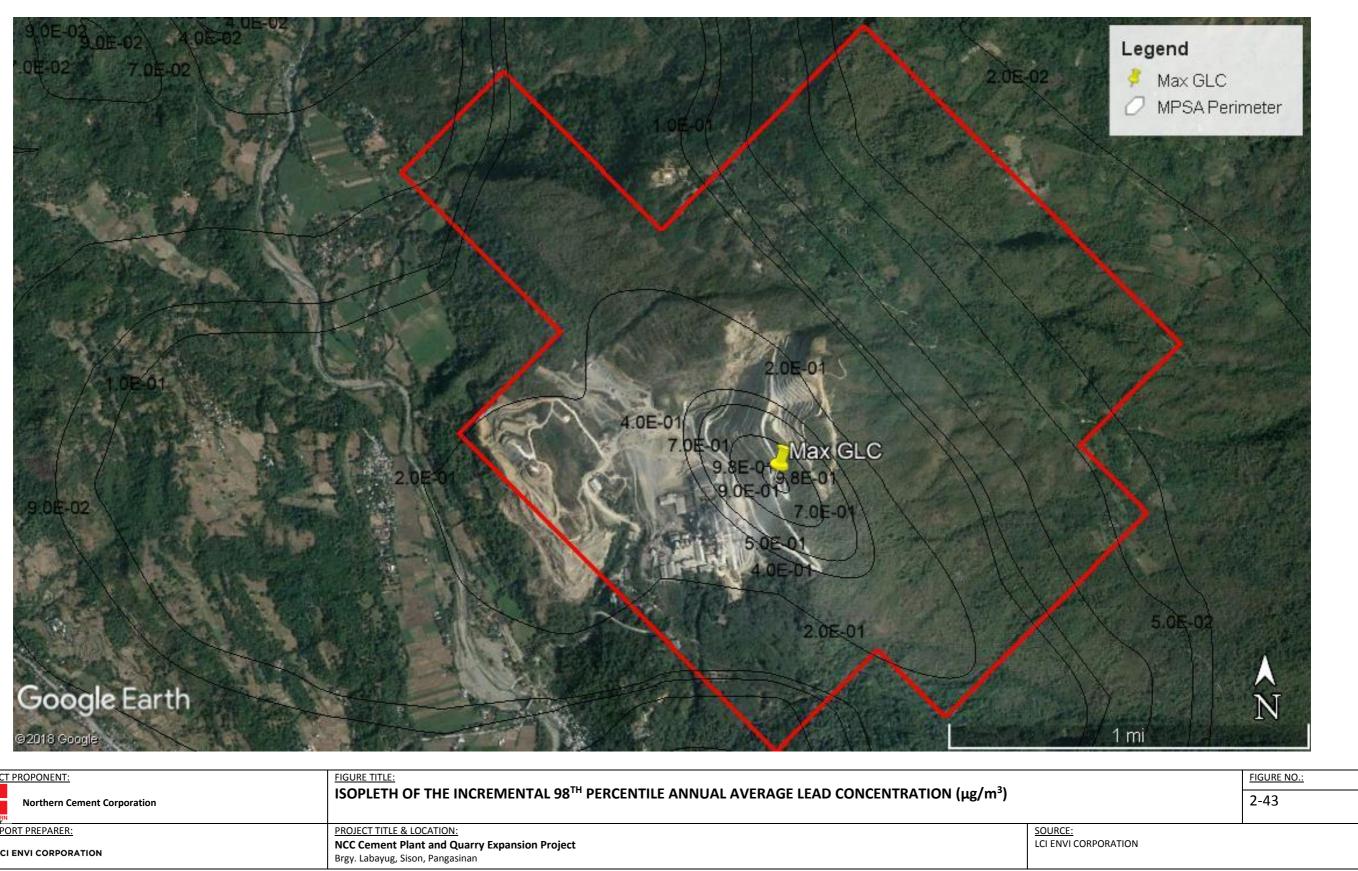
PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE SO ₂ CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: LCI ENVI CO

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE NO ₂ CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: LCI ENVI CO

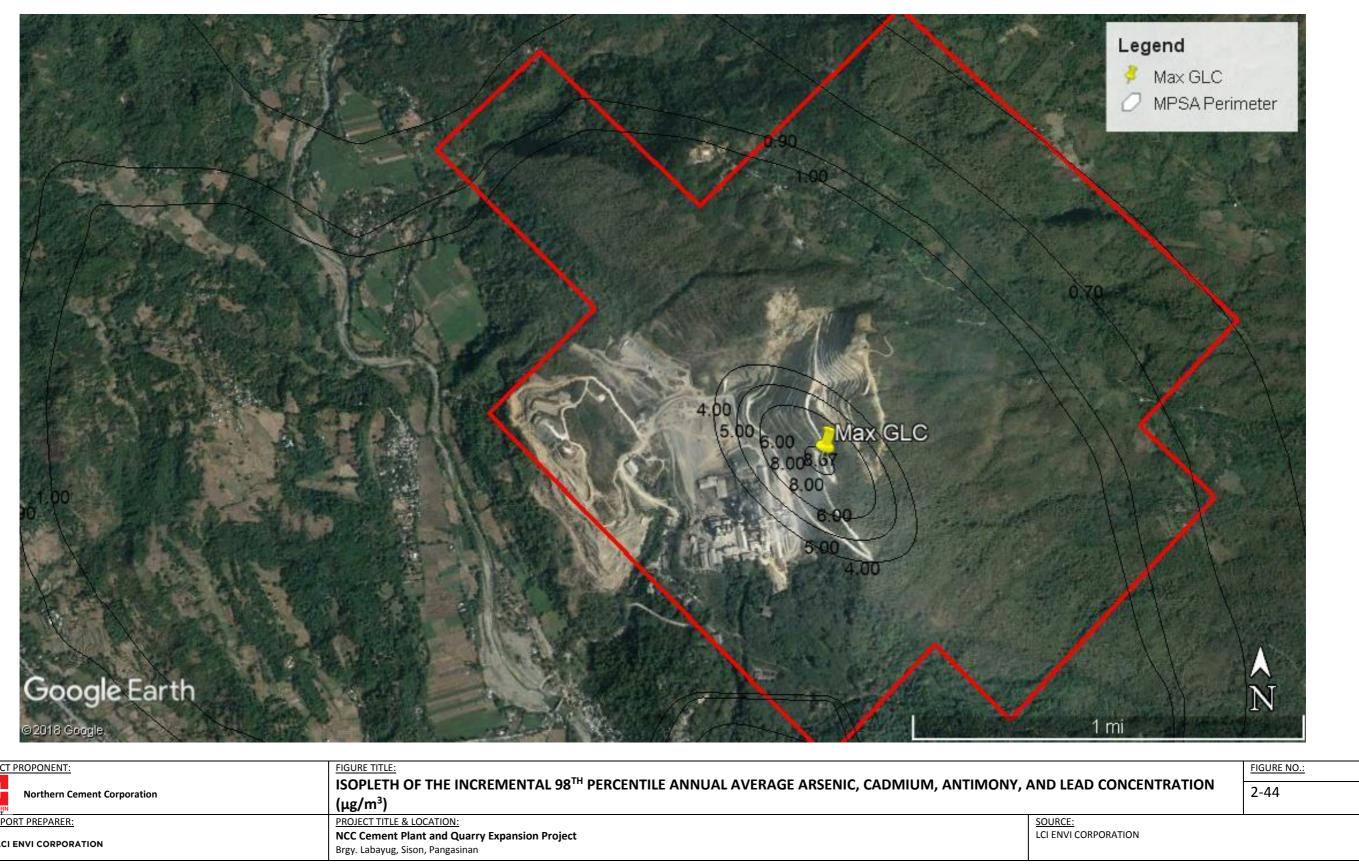
Air Dispersion Modeling of Heavy Metals

- ²⁹² The cement plant is expected to emit heavy metals since it will use alternative fuels such as used oil, petroleum coke, shredded tires, refuse-derived fuel from municipal solid waste, and rice husk. The main sources of heavy metals are the kilns of NCC and SMNCI during start-up and calcination.
- ²⁹³ **Table** 2-41 summarizes the modeling results describing the predicted incremental maximum ground level concentration (GLC) of the heavy metals at different averaging time. The isopleths for the annual average GLC of Pb and 30-minute averaging time GLC of As, Cd, Sb, and Pb are also shown in **Figure** 2-43 and **Figure** 2-44.

Pollutant	Averaging time	Maximum Uncontrolled GLC ^ь	Maximum Controlled GLC ^b	UTM East	UTM North	CAA Standards ª (µg/m³)
		(µg/m³)	90% Efficiency			
			(µg/m³)			
As	30 mins	8.67	0.09	240300.07	1788965.74	20
Cd	30 mins	8.67	0.09	240300.07	1788965.74	10
Sb	30 mins	8.67	0.09	240300.07	1788965.74	20
Pb	30 mins	8.67	0.09	240300.07	1788965.74	20
	Annual	0.98	0.0098	240300.07	1788965.74	1.0


Table 2-41: Predicted incremental maximum GLC of gaseous emissions in the study area

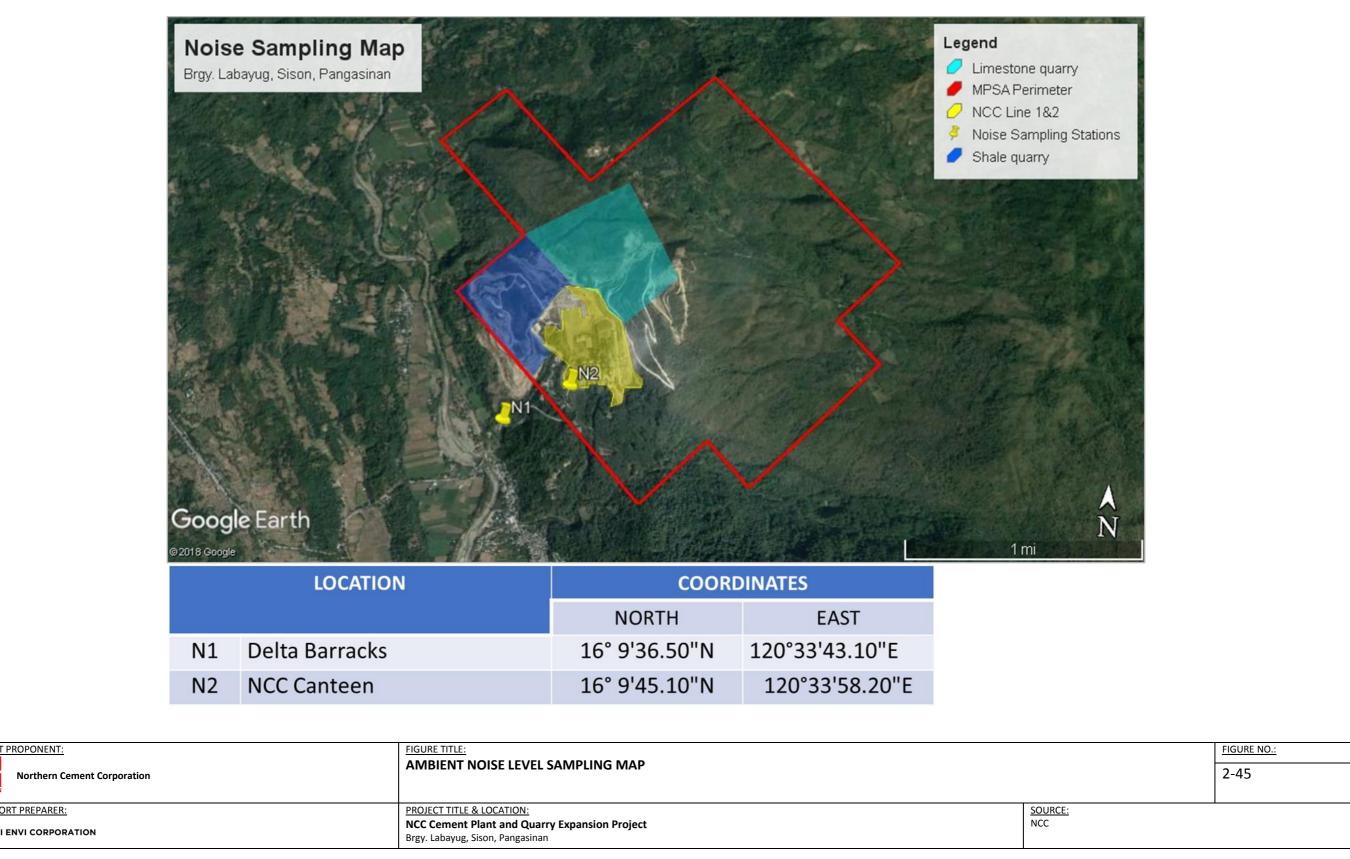
^a Section 1, Rule XXVI Source Specific Ambient Air Quality Standards (DAO 2000-81)


^b 98th percentile value

- Results indicate that these predicted incremental GLCs of As, Cd, Sb, and Pb are below the prescribed limit stipulated in DAO 2000-81, the Implementing Rules and Regulation (IRR) of RA 8749, the Philippine Clean Air Act (CAA) of 1999. Emissions can be reduced further given that the bag filters will capture 90% of the heavy metal emissions.
- ²⁹⁵ The pattern of 98th percentile isopleth shown in **Figure** 2-43 and **Figure** 2-44 also suggests the impact of the plume is in northeasterly direction as influenced by the predominant wind condition in the area. The predicted maximum GLCs of pollutants were also observed to be within the MPSA.
- ²⁹⁶ To ensure that pollutant concentrations in the area are kept below standards, bag filters will be installed by both companies to mitigate the heavy metal emissions. According to the specifications of the bag filters, it can control heavy metal emissions by up to 92%.

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE LEAD CONCENTRATION (μg/m ³)	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURC LCI EN

	PROJECT PROPONENT:	FIGURE TITLE:	
Northern Cement Corporation	ISOPLETH OF THE INCREMENTAL 98 TH PERCENTILE ANNUAL AVERAGE ARSENIC, CADMIUM, ANTIMONY, A	AND LEA	
		(μg/m³)	
	EIA REPORT PREPARER:	PROJECT TITLE & LOCATION:	SOURCE:
		NCC Cement Plant and Quarry Expansion Project	LCI ENVI C
		Brgy. Labayug, Sison, Pangasinan	1
			1



2.3.2.2 Increase in ambient noise level

- ²⁹⁷ Review of ambient noise level was based on Northern Cement Corporation's Self-Monitoring Reports from 2016 to 2019. NCC is monitoring noise level during morning, daytime, evening and nighttime in the two sampling stations (see Figure 2-45). Based from the results, noise levels at both sampling stations are complying with the correspond standard limits of the NPCC. The average of the results of the noise level monitoring of NCC is shown in Figure 2-46.
- ²⁹⁸ To minimize noise, heavy equipment are appropriately muffled. Workers operating heavy equipment are provided with appropriate PPE, as necessary. Another measure taken by the company to minimize ambient noise is performing noisy activities only during daytime. Noise barriers and sound proofing are already installed in areas that generate loud noises. Installation of mufflers on equipment was also done to help mitigate concerns on noise. These noise mitigating measures have proven to be effective, as seen in the monitoring of **Northern Cement Corporation.**

N1 [Delta Barracks	16° 9'36.50"N	120°33'43.10"E
N2 1	NCC Canteen	16° 9'45.10"N	120°33'58.20"E

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: AMBIENT NOISE LEVEL SAMPLING MAP	
EIA REPORT PREPARER:	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project Brgy. Labayug, Sison, Pangasinan	SOURCE: NCC

Environmental Performance Report and Management Plan SECTION 2 ASSESSMENT OF ENVIRONMENTAL IMPACTS

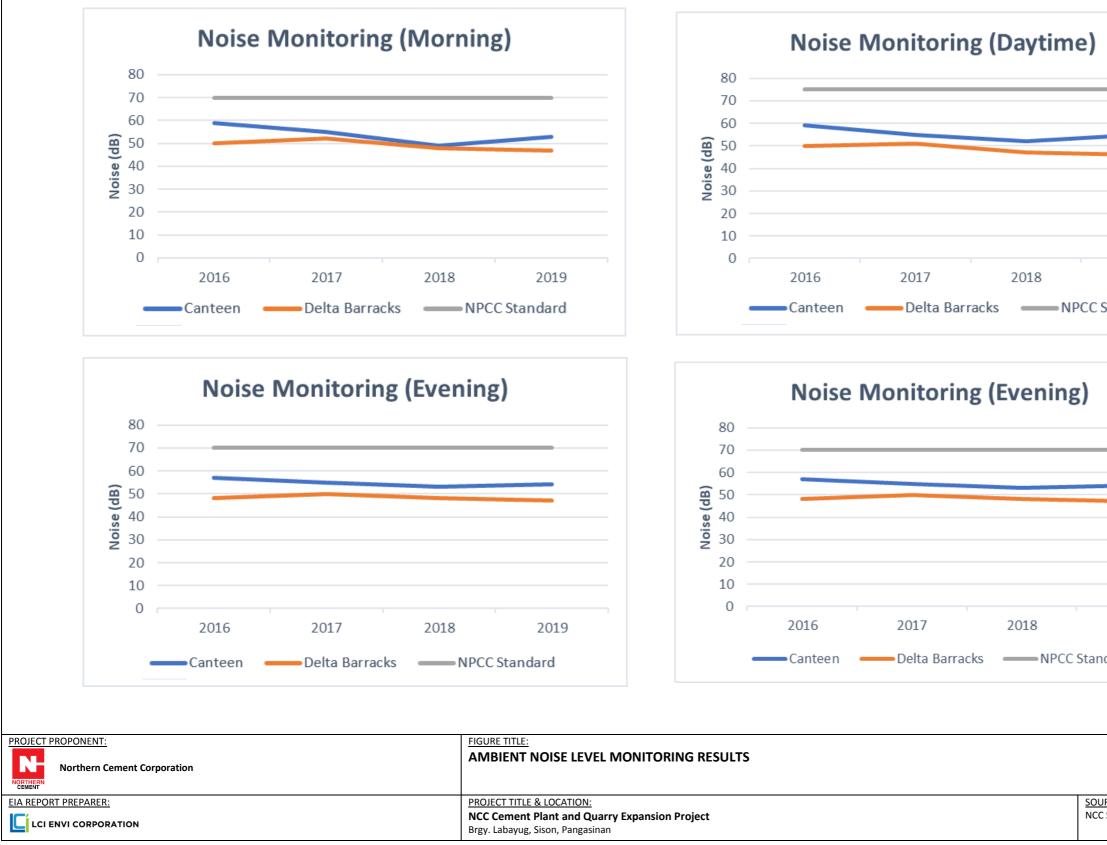


Figure 2-46: Ambient Noise Level Monitoring Results

Environmental Performance Report and Management Plan **SECTION 2** ASSESSMENT OF ENVIRONMENTAL IMPACTS

	1		
2019			
itandard			
carroana			
2019			
dard			
		FIGURE NO.:	
	ł	2-46	
<u>RCE:</u> SMR			

2.3.3 Summary of Baseline Findings. Impacts and Mitigation on Air and Noise

²⁹⁹ The following table lists the impacts and mitigation on Air and Noise.

Table 2-42: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on Air and Noise

Summary of Baseline Findings on Air:

- Meteorology
 - The project area mainly belongs to Type I climate under the modified Coronas classification (two pronounced seasons, dry from December to May and wet from June to November).
 - Temperature is highest in April and lowest in January.
 - The rainiest month is August with mean monthly rainfall values of 581.3mm. The driest month in the area is January with only 6.7 mm of rainfall.
 - An average of 5 cyclones pass through the area every three years.

Ambient Air Quality and Noise

• All sampling stations showed acceptable ambient air and noise conditions, with the values below the specified NAAQS and NPCC limits, respectively.

POTENTIAL IMPACTS	PROJECT PHASES	DESCRIPTION	MITIGATING MEASURES
AMBIENT AIR QUALITY	AND NOISE		
Impact on Air Quality	Construction	NO _x , SO ₂ , and CO emissions from heavy equipment that will be used during construction	Proper maintenance on heavy equipment.
	Operation	TSP and PM ₁₀ emissions from the cement manufacturing facility and quarry sites is of primary concern	Installation of bag filters that will control at least 99% of the emissions from the cement manufacturing plant of NCC and SMNCI Road watering within the plant site to control dust
		Gaseous emissions are expected from the kiln.	Proper maintenance of equipment to ensure efficiency
		Heavy metal emissions are expected from the kiln due to use of alternative fuels	Bag filters can also control up to 92% of heavy metal emissions
Increase in Ambient Noise Level	Construction/ Operation	Noise will be generated by heavy equipment during construction	Maintenance of engines and other mechanical parts of the equipment
		The cement plant will generate noise	Installation of exhaust mufflers Constructing enclosures surrounding the project site
			Maintenance of vegetation surrounding the area to serve as natural noise barriers
			Quarry operations limited during daytime

2.4 The People

Land Area

- ³⁰⁰ Sison is a 3rd Class Municipality in the Philippines and has a land area of 13,788 Has., which is 1.5% of the total land area of the Province of Pangasinan. The municipality is bounded by Rosario, La Union on the north, Pozzorubio, Pangasinan on the south, San Manuel and Binalonan, Pangasinan on the southeast, Tuba, Benguet on the northeast and San Fabian, Pangasinan on the west.
- ³⁰¹ Pozorrubio is a 1st Class Municipality in the Philippines and has a land area of 8,965 Has., which is 1.64% of the total land area of the Province of Pangasinan. The municipality is bounded San Jacinto, Pangasinan on the west, southwest by the Municipality of Manaoag, southeast by the Municipalities of Laoac and Binalonan, northwest by the Bued River and the Municipality of San Fabian, and on the east by the Aloragat River and a portion of the Municipality of Sison.

Demography

- ³⁰² The Municipality of Sison has a total population of 47,518 people with an estimated number of households of 10,659 at an average household size of 4-5 as of the 2015 census by the Philippine Statistics Authority (PSA).
- As summarized in **Table** 2-43, the municipality is comprised of 28 (5 urban and 23 rural) barangays. The data presented shows that rural population greatly outnumbers the population of urban barangays. Barangay Labayug has the highest number of population in the municipality with 4,078 people.
- ³⁰⁴ Majority of the population (75.47%) and households (74.52%) are living in the rural areas in Sison.

Table 2-43: Population of Sison per Barangay, 2015

NO.	BARANGAY	POPULATION	HOUSEHOLDS
Α.	URBAN BARANGAY		
1	Poblacion Central	1,596	352
2	Poblacion Norte	1,984	421
3	Poblacion Sur	1,137	255
4	Labayug	2,859	702
5	Paldit	4,078	986
	Sub-Total	11,654	2,716
В.	RURAL BARANGAY		
1	Agat	1,310	315
2	Alibeng	1,422	325
3	Amagbagan	751	148
4	Artacho	1,305	279
5	Asan Norte	2,425	530
6	Asan Sur	2,826	639
7	Bantay Insik	1,416	333
8	Bila	1,686	418
9	Binmeckeg	1,734	394
10	Bulaoen East	1,031	234
11	Bulaoen West	1,046	215

LCI ENVI CORPORATION

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

NO.	BARANGAY	POPULATION	HOUSEHOLDS
12	Cabaritan	1,619	356
13	Calunetan	817	189
14	Camangaan	1,185	234
15	Cauringan	1,649	329
16	Dungon	1,588	346
17	Esperanza	1,891	452
18	Inmalog	1,673	391
19	Killo	1,764	395
20	Pindangan	1,562	300
21	Pinmilapil	1,867	391
22	Sagunto	2,064	436
23	Tara-tara	1,233	294
	Sub-Total	35,864	7,943
	TOTAL	47,518	10,659

Source: 2015 Philippine Statistics Authority Census

2018 Philippine Standard Geographic Code

- 305 The Municipality of Pozorrubio has total population of 69,555 people with an estimated number of households of 16,856 at an average household size of 4-5 as of the 2015 census by the PSA.
- 306 As summarized in Table 2-44, the municipality is comprised of 34 (1 urban and 33 rural) barangays. Similarly, the data presented shows that rural population greatly outnumbers the population of urban barangays. Barangay Alipangpang has the highest number of population in the municipality with 5,634 people.
- 307 Majority of the population (92.90%) and households (91.38%) are living in the rural areas in Pozorrubio.

NO.	BARANGAY	POPULATION	HOUSEHOLDS
Α.	URBAN BARANGAY		
1	Alipangpang	5,634	1,453
	Sub-Total	5,634	1,453
В.	RURAL BARANGAY		
1	Amagbagan	2,480	594
2	Balacag	806	196
3	Banding	996	260
4	Bantugan	1,046	290
5	Batakil	2,770	629
6	Bobonan	2,645	608
7	Buneg	1,914	520
8	Cablong	1,791	411
9	Casanfemandoan	1,137	261
10	Castano	1,010	256
11	Dilan	3,714	911
12	Don Benito	1,397	144
13	Haway	628	344
14	Imbalbalatong	2,200	536
15	Inoman	2,372	578

Table 2-44: Population of Pozorrubio per Barangay, 2015

NO.	BARANGAY	POPULATION	HOUSEHOLDS
16	Laoac	1,207	311
17	Maambal	1,315	336
18	Malasin	2,021	496
19	Malokiat	1,136	271
20	Manaol	1,435	309
21	Nama	3,095	709
22	Nantangalan	1,742	459
23	Palacpalac	2,871	695
24	Palguyod	3,043	679
25	Poblacion I	2,578	520
26	Poblacion II	1,299	349
27	Poblacion III	1,510	331
28	Poblacion IV	1,621	359
29	Rosario	5,187	1,381
30	Sugcong	1,906	449
31	Talogtog	2,303	615
32	Tulnac	885	191
33	Villegas	1,861	405
	Sub-Total	63,921	15,403
	TOTAL	69,555	16,856

Source: 2015 Philippine Statistics Authority Census

2018 Philippine Standard Geographic Code

Population Density

- ³⁰⁸ Given the total land area and 2015 population of Sison, every square kilometer is inhabited by more or less 580 people. Based from this density, it can be said that the municipality is not crowded. In addition, the population density of Sison is higher than the population density of Pangasinan which is pegged at 542 people per square kilometer.
- ³⁰⁹ For Pozorrubio, every square kilometer is inhabited by more or less 517 people. Based from this density, it can be said that the municipality is not crowded. In addition, the population density of Pozorrubio is lower than the population density of Pangasinan which is pegged at 542 people per square kilometer.

Population Growth Rate

- ³¹⁰ Based from the 2010 census, the population of Sison was only 43,979. Over the span of 5 years, the population increased by 3,539 (est. annual increase: 708) with +1.48% annual growth rate.
- ³¹¹ Based from the 2010 census, the population of Pozorrubio was only 66,111. Over the span of 5 years, the population increased by 3,444 (est. annual increase: 689) with +0.97% annual growth rate.

Population by Sex

³¹² Based on the CLUP of Sison, in terms of population by sex ratio in Sison, there are more males than females with a total population of 21,679 (50.88%) to 20,929 (49.12%) with ratio of 104 males to 100 females.

Housing

- ³¹³ Based from the 2015 PSA Housing Characteristics in the Philippines, there are 10,532 occupied housing units in the municipality compared to 10,659 households. Majority of the housing units in the municipality are single houses (91.27%).
- ³¹⁴ For the municipality of Pozorrubio, there are 15,789 occupied housing units in the municipality against 16,856 households. Majority of the housing units in the municipality are single houses (92%).
- ³¹⁵ The details of the housing characteristics for both the Municipalities of Sison and Pozorrubio are found in **Table 2**-45.

	ing characteria	stics for sison and	020110010, 2015	
MUNICIPALITY	OCCUPIED	NO. OF	HOUSEHOLD	AVE. HOUSEHOLD
	HOUSING	HOUSEHOLDS	POPULATION	SIZE
	UNIT			
MUNICIPALITY OF SISON				
Single house	9,613	9,736	43,490	4.47
Duplex	639	642	2,827	4.40
Multi-unit residential	270	271	938	3.46
Commercial/industrial/agricultural	8	8	16	2.00
Institutional living quarter	2	2	9	4.50
Others	-	-	-	-
Not Reported	-	-	-	-
TOTAL	10,532	10,659	47,280	4.44
MUNICIPALITY OF POZORRUBIO	-	-		
Single house	14,527	15,556	64,434	4.14
Duplex	908	933	3,714	3.98
Multi-unit residential	314	320	1,219	3.81
Commercial/industrial/agricultural	22	28	111	3.96
Institutional living quarter	-	-	-	-
Others	-	-	_	-
Not Reported	18	19	63	3.32
TOTAL	15,789	16,856	69,541	4.13

Table 2-45: Housing Characteristics for Sison and Pozorrubio, 2015

Source: 2015 Philippine Statistics Authority Census

2.4.1 Displacement of settler/s

³¹⁶ Displacement of settlers is not expected to result from the project, since the proposed project site was located within the existing **Northern Cement Corporation** cement plant complex. Further, there are no formal and informal settlers that are inhabiting near proposed project area.

Land Tenure Profile

³¹⁷ In terms of the land tenure of the household respondents (**Table** 2-46), in all 5 impact barangays, majority of the respondents mentioned that they own the land that they were currently occupying. Further, a good percentage of the respondents mentioned that the land that they were occupying were rented and/or free occupancy with permission from the owner. However, there were a few respondents who mentioned that they occupy the land without permission from the owner.

Table 2-46: Land Tenure in the Project Impact Area

Municipality	S	ison	S	ison	S	ison	S	ison	S	ison	Pozorrubio	
			Lab	ayug S.								
Barangay	La	bayug	Sag	uitlang	Р	aldit	Ini	nalog	Calı	unetan	Sugcong	
Respondents		46		19		60		60		50		60
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Own land	33	72%	14	74%	35	58%	39	65%	25	50%	47	78%
Rented land	3	7%	0	0%	2	3%	7	12%	0	0%	0	0%
Free occupancy with												
permission from owner	6	13%	2	11%	13	22%	5	8%	7	14%	8	13%
Free occupancy without												
permission from owner	2	4%	0	0%	1	2%	4	7%	0	0%	0	0%
Others	2	4%	2	11%	3	5%	2	3%	15	30%	5	8%
No Answer	0	0%	1	5%	6	10%	3	5%	3	6%	0	0%

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

³¹⁸ In terms of the house tenure of the household respondents (**Table** 2-47), in all 5 impact barangays, majority of the respondents mentioned that they own the house that they were currently occupying. Further, a small percentage of the respondents mentioned that the house that they were occupying were rented and/or free occupancy with permission from the owner.

Municipality	S	ison	S	ison	S	ison	S	ison	S	ison	Poz	orrubio
			Lab	ayug S.					i .			
Barangay	La	bayug	Sag	uitlang	P	aldit	Ini	nalog	Cal	unetan	Su	ugcong
Respondents		46		19		60		60		50		60
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Own house	41	<mark>89%</mark>	17	89%	40	67%	46	77%	39	78%	52	87%
Rented house	2	4%	1	5%	4	7%	3	5%	0	0%	0	0%
Free occupancy with												
permission from owner	1	2%	1	5%	11	18%	6	10%	4	8%	6	10%
Free occupancy without												
permission from owner	0	0%	0	0%	2	3%	2	3%	0	0%	0	0%
Others	2	4%	0	0%	2	3%	1	2%	1	2%	2	3%
No Answer	0	0%	0	0%	1	2%	2	3%	6	12%	0	0%

Table 2-47: Housing Tenure in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

³¹⁹ In terms of the house structure or make, the household respondents (**Table** 2-48), in all 5 impact barangays, majority of the respondents mentioned that they have a fully-concrete house. Followed by those with semi-concrete houses. It can be noted that a small percentage of the houses in the impact barangays were still using nipa, cogon, bamboo or wood and even recycled materials.

Table 2-48: Type of Housing Structure/Make in the Project Impact Area

Municipality	s	ison	s	ison	s	ison	s	ison	s	ison	Poz	orrubio	
Barangay	La	bayug		ayug S. uitlang	Р	aldit	Ini	nalog	Calı	unetan	รเ	Igcong	
Respondents		46		19		60		60		50		60	
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total	
		total		total		total		total		total			
Full concrete	30	65%	6	32%	36	60%	38	63%	26	52%	44	73%	
Semi-concrete	10	22%	5	26%	5	8%	16	27%	7	14%	8	13%	
Nipa, cogon, bamboo,	5	11%	4	21%	10	17%	6	10%	11	22%	8	13%	
wood													
Recycled materials	1	2%	0	0%	1	2%	0	0%	5	10%	0	0%	
Others	0	0%	4	21%	1	2%	0	0%	0	0%	0	0%	
No Answer	0	0%	0	0%	7	12%	0	0%	1	2%	0	0%	

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

2.4.1.1 Displacement/disturbance of properties

³²⁰ The project will not displace nor cause disturbance to nearby properties, as the project area is located in acquired private and titled lands by **Northern Cement Corporation**. Regulations on buffer zones/areas will be maintained and adhered to by the project. Further, the project is also located in an industrial zone designated by the Municipality of Sison.

2.4.1.2 Change/conflict in land ownership

³²¹ **Northern Cement Corporation** owns the 567 Has., were the proposed project is located. Hence, the project will not result to any change or conflict in land ownership.

2.4.1.3 Change/conflict on Right-of-Way

³²² A private road network, owned by **Northern Cement Corporation**, was already constructed and currently being utilized, leading to and from the National Highway, by Northern **Cement Corporation**. Hence, the project will not cause any change or conflict on right-of-way (ROW).

2.4.1.4 Impact to Public Access

³²³ In terms of impact to public access and as mentioned in **Section 2.4.1.3 Change/conflict on Right-of-Way**, the project will not utilize the existing barangay road networks near the project area and cement plant complex nor will it avoid or prevent the community from accessing and using public roads and facilities.

2.4.2 In-migration

- ³²⁴ A total of 86 manpower will be required during the project construction and 306 during operation. Northern Cement Corporation commits to prioritize employment of qualified workers from the host communities in the Municipalities of Sison and Pozorrubio in the Province of Pangasinan to mitigate the negative effects of in-migration.
- ³²⁵ If migrant workers are hired, Northern Cement Corporation will coordinate with the host LGU for the issuance of certificates containing pertinent information about the new employees. Furthermore, employees who are not from the host barangay or municipality will be housed within the cement plant complex to ensure their safety.

Place of Origin

³²⁶ In terms of place of origin of the respondents, in all 5 impact barangays, majority were originally from Sison. It can be noted that in Barangay Sugcong, Pozorrubio, (67%) of the respondents mentioned that they were originally from Sison.

Table 2-49: Place of Origin of Household Heads in the Project Impact Area

Municipality	S	ison	S	ison	S	ison	S	ison	S	ison	Poz	orrubio
Barangay	Lal	bayug		ayug S. uitlang	Р	aldit	Inmalog		Calunetan		Sı	ıgcong
Respondents		46		19		60		60		50		60
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Sison, Pangasinan	24	52%	11	58%	30	50%	41	68%	30	60%	40	67%
Pozorrubio, Pangasinan	5	11%	1	5%	6	10%	1	2%	1	2%	0	0%
Other towns in												
Pangasinan	2	4%	1	5%	3	5%	2	3%	1	2%	0	0%
Metro Manila	1	2%	0	0%	5	8%	1	2%	0	0%	0	0%
Others	14	30%	6	32%	16	27%	15	25%	18	36%	20	33%

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Religious Affiliation

³²⁷ In terms of religious affiliation, all 5 impact barangays were pre-dominantly Roman Catholic. While there was a high percentage of respondents that were affiliated with Born Again Christians.

Municipality	s	ison	s	ison	6	ison	s	ison	s	ison	Doz	orrubio
wanterpancy	315011					515011		13011	513011		1 02011 0010	
			Lab	ayug S.								
Barangay	Labayug		Sag	uitlang	Р	aldit	Ini	nalog	Calu	unetan	Sugcong	
Respondents		46		19		60		60		50		60
Category	No. %		No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Roman Catholic	18	39%	8	42%	50	83%	30	50%	34	68%	49	82%
Iglesia ni Cristo	0	0%	1	5%	1	2%	6	10%	5	10%	4	7%
Born Again Christian	19	41%	2	11%	4	7%	3	5%	3	6%	4	7%
Islam	0	0%	1	5%	1	2%	0	0%	0	0%	0	0%
Others	9	20%	3	16%	1	2%	21	35%	8	16%	3	5%
No Answer	0	0%	4	21%	3	5%	0	0%	0	0%	0	0%

Table 2-50: Religious Affiliations of the	Household Heads in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

2.4.2.1 Proliferation of informal settlers

- ³²⁸ Proliferation of informal settlers is not expected to result from the project as Northern Cement Corporation prioritizes employment of qualified workers living within the host communities in the Municipalities of Sison and Pozorrubio in the Province of Pangasinan.
- ³²⁹ To date, there were no known instances of informal settlers proliferating near the cement plant complex.

2.4.3 Cultural/Lifestyle Change (especially on Indigenous People, if any)

- ³³⁰ There are no known indigenous peoples residing near or within the project area. Hence, cultural and lifestyle changes that may affect the indigenous peoples are not expected to result from the proposed project.
- ³³¹ In terms of lifestyle change, increased local income from the project may introduce and expose workers and the community to vices that tend to undermine the morality of the people. Hostelry areas, such as videoke bars, nightclubs, gambling places, and prostitution, among others may proliferate with demand. If not properly handled, addiction to such vices may contribute in social problems, such as destruction of family and values and increase in crime rate.
- ³³² **Northern Cement Corporation** continuously commits to work closely with the both the municipal and barangay LGUs and PNP to regulate and enforce law to avoid vice-related problems in the community. In addition, **Northern Cement Corporation** strictly implements a drug- and alcohol-

free work environment. Commitment to install closed circuit televisions (CCTVs) in strategic places in the plant and the community will be prioritized.

2.4.4 Impacts on Physical Cultural Resources

³³³ There are no literature or national/international publications found in the project area that have archaeological, paleontological, historical, aesthetical, or cultural, both tangible and intangible, significance, or immovable objects, below ground or underwater, sites, structures, groups of structures, and natural features.

2.4.5 Threat to Delivery of Basic Services/Resource Competition

- ³³⁴ If skills are not available in the locality, **Northern Cement Corporation** or its contractors, may bring in skilled personnel from outside of the host municipality. Although their residency is temporary, transient workers will have needs that are similar to the permanent residents in the area. Hence, competition for food, shelter, power, water, and other local resources may be expected.
- ³³⁵ To mitigate this, Northern Cement Corporation will continue to provide priority employment/hiring to deserving and qualified residents living in the host and nearby communities. Various livelihood and skills training seminars and workshops were being conducted to capacitate and increase the number of skilled persons within the community where the cement plant complex is currently operating.

Power Supply

- ³³⁶ Based from the 2007 CLUP of the municipality, Sison is served by 2 power supply service providers namely: Benguet Electric Cooperative (BENECO) and La Union Electric Cooperative (LUELCO).
- ³³⁷ The municipality of Pozorrubio is served by a power supply service provider namely: Pangasinan III Electric Cooperative, Inc. (PANELCO III).
- ³³⁸ Based from the Province of Pangasinan official website, as of 2009, all of the municipalities and barangays are electrified, however, only (82%) of the households have service connections with the respective power supply providers. In the CLUP of Sison, it was mentioned that more than (90%) of the households have access to electricity.

Water Supply

³³⁹ In terms of access to drinking water supply sources (**Table** 2-51), almost all of the respondents in all 5 barangays answered that they source their drinking water from water refilling stations. Further, there are still households who were using hand/pumps and jetmatic wells for their drinking water supply. A small percentage of the respondents answered that they source their drinking water supply from metered connections (Level III).

Table 2-51: Drinking Water Supply Sources of Surveyed Households in the Project Impact Area

Municipality	S	ison	S	ison	S	ison	S	ison	S	ison	Pozorrubio	
			Labayug S.						l .			
Barangay	Lal	bayug	Sag	uitlang	Р	aldit	Ini	nalog	Calu	unetan	Sugcong	
Respondents		46		19		60	60			50		60
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Metered connection	2	4%	0	0%	8	13%	9	15%	0	0%	13	22%
Handpump/well	5	11%	0	0%	15	25%	16	27%	0	0%	16	27%
Surface water (river,												
lake, rain-water)	1	2%	7	37%	1	2%	12	20%	6	12%	0	0%
Water refilling station	36	78%	9	47%	33	55%	19	32%	43	86%	37	62%
Others	2	4%	2	11%	2	3%	3	5%	1	2%	0	0%
No Answer	0	0%	1	5%	1	2%	1	2%	0	0%	0	0%

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Sanitation

340 With regards to access to sanitary toilet facilities (Table 2-52), almost all the households in the 5 barangays have access to water-sealed and pour-flush toilet. It can be noted that in Sitio Saguitlang in Barangay Labayug, none of the households surveyed have access to sanitary toilet facilities are using communal toilets for their sanitary needs.

Barangay Labayug Labayug Saguitlang Paldit Inmalog Calunetan Sugcong Respondents 46 19 60 60 50 60 Category No. % total No.													
Barangay Labayug Saguitlang Paldit Inmalog Calunetan Sugcong Respondents 46 19 60 60 50 60 Category No. % total No. %	Municipality	Sison		S	ison	Sison		Sison		Sison		Pozorrubio	
Respondents 46 19 60 60 50 60 Category No. % % No. % % No. % % No. %				Labayug S.									
Category No. % total	Barangay	Labayug		Saguitlang		Paldit		Inmalog		Calunetan		Sugcong	
total total total total total	Respondents	46			19 60		60	60		50		60	
	Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
None 3 7% 19 100% 20 33% 21 35% 1 2% 3 55			total		total		total		total		total		
	None	3	7%	19	100%	20	33%	21	35%	1	2%	3	5%
Private Toilet 43 93% 0 0% 37 62% 36 60% 41 82% 54 90	Private Toilet	43	93%	0	0%	37	62%	36	60%	41	82%	54	90%
Communal 0 0% 0 0% 3 5% 3 5% 8 16% 3 5	Communal	0	0%	0	0%	3	5%	3	5%	8	16%	3	5%
Type of toilet													
Water-sealed 41 95% 0 0% 32 80% 5 13% 38 78% 3 5	Water-sealed	41	95%	0	0%	32	80%	5	13%	38	78%	3	5%
Pour-flush 2 5% 0 0% 8 20% 34 87% 11 22% 54 95	Pour-flush	2	5%	0	0%	8	20%	34	87%	11	22%	54	95%

Table 2-52: Sanitary Toilet Facility of Households in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Existing Roads Networks

341 According to the CLUP of Sison and as presented in Table 2-53, the municipality is traversed by 118.76 kilometers of overall road network. In which, 5.0 kilometers are national road; 11.20 kilometers are provincial roads, 8.44 kilometers are municipal roads, and 94.11 kilometers are barangay roads.

Table 2-53: Existing Road Network in Sison											
ТҮРЕ	CONCRETE	ASPHALT	GRAVEL	EARTH	TOTAL (KM.)						
National	5.00	-	-	-	5.00						
Provincial	4.50	6.700	-	-	11.20						
Municipal	8.44	-	-	-	8.44						
Barangay	39.80	3.062	51.26	-	94.11						
TOTAL	59.07	7.062	52.63	-	118.75						

able 2 E2: Existing Boad Notwork in Sicon

Source: Comprehensive Land Use Plan of Sison

Literacy Rate and Educational Facilities

342 The literacy rate, based on the CLUP, in the municipality of Sison was estimated at (95.62%) in 2015.

The number of both private and public academic institutions spread throughout Sison are: 30 preschool centers, 28 day-care centers, 29 primary/elementary schools, 11 secondary/high school and 1 tertiary institution. The detailed breakdown of the academic institutions is presented in **Table** 2-54.

ACADEMIC INSTITUTIONS	PRIVATE	PUBLIC	TOTAL							
Pre-School	2	28	30							
Day Care Center	0	28	28							
Elementary	2	27	29							
Secondary	2	9	11							
Tertiary	1	0	1							
TOTAL	7	92	99							

Table 2-54: Academic Institutions in Sison

Source: Comprehensive Land Use Plan of Sison

- ³⁴⁴ In Pozorrubio, the literacy rate in 2015 was at (95.66%). The proportion of household population who were able to read and write a simple message was registered at (95.45%). It can be noted that the female literacy rate of (95. 67%) was slightly higher that among male of (95.65%).
- ³⁴⁵ In terms of educational attainment (**Table** 2-55), in 4 out of 5 impact barangays, most of the respondents were able to reach or finish high school education. It can be noted that in Barangay Labayug, majority of the respondents were able to reach or graduate college.

Municipality	s	ison	s	ison	s	ison	s	ison	s	ison	Poz	zorrubio	
Barangay	Labayug		Labayug S. Saguitlang		P	Paldit		Inmalog		Calunetan		Sugcong	
Respondents		46		19		60		60	50		60		
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total	
		total		total		total		total		total			
Elementary	5	11%	4	21%	5	8%	11	18%	13	26%	19	32%	
High School	14	30%	4	21%	31	52%	32	53%	33	66%	30	50%	
College	15	33%	2	11%	17	28%	8	13%	3	6%	5	8%	
Vocational	11	24%	2	11%	5	8%	8	13%	0	0%	5	8%	
Others	0	0%	6	32%	0	0%	1	2%	1	2%	1	2%	
No Answer	1	2%	1	5%	2	3%	0	0%	0	0%	0	0%	

Table 2-55: Educational Profile of the Household Heads in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

2.4.6 Threat to Public Health and Safety

- ³⁴⁶ Given the nature of the project, dust may cause negative health effects, especially in the respiratory system, to the community members and workers if not properly mitigated. **Northern Cement Corporation** will conduct medical missions and provide regular check-ups to its workers and the host communities. In addition, there will be constant coordination with the Municipal Health Officers (MHOs) and barangay health units (BHUs) to address health-related needs of the community.
- ³⁴⁷ Crime incidence may also increase in the local community. With available money at hand, proliferation of vices that tends to undermine the morality of the people in the barangay is potentially expected. Videoke bars, clubs, gambling places, prostitution, and others can rise in due time when workers in the project site could be attracted to such offering and indulge in activities that may destroy family values.
- ³⁴⁸ Furthermore, drinking may result to the commission of crimes if not properly handled. It is anticipated therefore that social problems may arise as an aftermath of a fluid local economy. Northern Cement Corporation will continue to regularly coordinate with the barangay officials to

ensure peace and order among the workers and the community members. In addition to this, there will be minimal interaction among the workers and the community members, as most of the times, the workers are in the plant premises.

Health Facilities

³⁴⁹ The Municipality of Sison currently has 1 Rural Health Unit (RHI) located near the Municipal Hall and 28 Barangay Health Stations to cater to the health needs of the people. In terms of the number of medical professionals complimenting the available health facilities in the area, the municipality has a Municipal Health Officer (MHO), dentist, nurses, population officer, sanitary inspector, medical technologist and 10 midwives.

Morbidity

Table 2-56 presents the leading causes of morbidity in the Municipality of Sison from 2014 to 2018. In 2014 to 2017, hypertension leads the cause of morbidity in the municipality. Further, in 2018, it was second only to urinary tract infection (URTI) by 241 cases. Majority of the morbidity cases are related to respiratory diseases, with some lifestyle diseases. Based from the CLUP, it was noted that the respiratory diseases experienced in Sison was attributed to the changing weather condition and poor health status of the people.

2	2014			15		20	16		20	2017			2018		
CAUSE	NO.	RATE	CAUSE	NO.	RATE	CAUSE	NO.	RATE	CAUSE	NO.	RATE	CAUSE	NO.	RATE	
Hypertension	542	11.98	Hypertension	720	15.81	Hypertension	825	17.99	Hypertension	1,343	26.49	Upper Respiratory Tract Infection	778	15.12	
Pneumonia	521	11.51	Pneumonia	635	13.94	Pneumonia	807	17.6	Pneumonia	699	13.79	Hypertension	537	10.43	
Acute Respiratory Infection	226	4.99	Acute Respiratory Infection	337	7.4	Acute Respiratory Infection	755	16.47	Acute Respiratory Infection	311	6.13	Pneumonia	296	5.75	
Influenza	213	4.7	Influenza	287	6.3	Influenza	366	7.98	Influenza	306	6.03	Bronchitis	183	3.55	
Iron Deficiency Anemia	127	2.8	Diarrhea	140	3.07	Diabetes Mellitus	234	5.1	Bronchitis	196	3.86	Influenza	96	1.86	
Acute Gastroenteritis	117	2.58	Tuberculosis	107	2.34	Bronchitis	196	4.27	Iron Deficiency Anemia	139	2.74	Acute Gastro Enteritis	89	1.73	
Tuberculosis	91	2.14	Iron Deficiency Anemia	104	2.28	Tuberculosis	149	3.18	Tuberculosis	102	2.01	Urinary Tract Infection	66	1.28	
Bronchitis	55	1.21	Animal Bite	34	0.74	Iron Deficiency Anemia	144	3.14	Diarrhea	95	1.08	Rhinitis	49	0.95	
Animal Bite	41	0.9	Diabetes Mellitus	17	0.37	Diarrhea	73	1.59	Diabetes Mellitus	40	0.78	АТР	45	0.87	
Chicken Pox	31	0.68	Asthma	9	0.15	Animal Bite	32	0.69	Animal Bite	19	0.37	Bronchial Asthma	34	0.66	

Table 2-56: Leading Causes of Morbidity in Sison (2014-2018)

Source: Comprehensive Land Use Plan of Sison Municipal Health Office of Sison

³⁵¹ In line with the municipal health data of Sison, the health reports (**SEE: Table** 2-57), from period 2014 to 2018, from the Barangay Local Government Units (BLGUs) of Labayug, Calunetan and Inmalog reported similar causes of morbidities reflected on the municipal health data. Common illnesses such as fever, cough, colds, diarrhea and influenza are observed in the 3 barangays. Further, there were also reported cases of pulmonary tuberculosis, hypertension, animal bites and chickenpox in the barangays.

CEWENT										
	Ta	able 2-57: Leading	Causes	of Morbidity in N	CC Impa	act Barangays (201	L4-2018)		
2014		2015		2016		2017	2018			
BRGY. LABAYU	G									
CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	
Fever	490	Fever	505	Cough	579	Cough	416	Cough	576	
Cough	315	Cough	487	Fever	311	Fever	398	Fever	439	
Colds	35	Colds	23	Colds	105	Colds	92	Colds	85	
				Diarrhea	42	Diarrhea	83	Diarrhea	41	
				Pulmonary	8			Pulmonary	4	
				Tuberculosis				Tuberculosis		
BRGY. CALUNE	TAN									
CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	
Colds	40	Cough	27	Cough	37	Cough	38	Fever	37	
Cough	39	Headache	15	Colds	32	Colds	37	Cough	27	
Fever	15	Colds	14	Fever	22	Hypertension	15	Colds	25	
Headache	11	Hypertension	12	Hypertension	13	Fever	10	Headache	20	
Hypertension	10	Fever	10	Headache	10	Headache	4	Hypertension	11	
BRGY. INMALC	G									
2014		2015		2016		2017		2018		
CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	CAUSE	NO.	
Fever	101	Cough	103	Colds	112	Fever	91	Colds	116	
Cough	98	Fever	98	Cough	110	Colds	81	Cough	111	
Colds	75	Influenza	86	Fever	97	Cough	76	Influenza	105	
Diarrhea	60	Colds	81	Influenza	15	Pulmonary	4	Pulmonary	6	
						Tuberculosis		Tuberculosis		
Chicken Pox	7	Animal Bite	6	Diarrhea	6					

Source: Barangay Local Government Unit of Labayug, Calunetan and Inmalog

Mortality

Table 2-58 presents the leading causes of mortality in the Municipality of Sison from 2014 to 2018. In 2014 to 2017, senility or old age was the leading cause of mortality in the municipality. However, in 2018, It was taken over by Cerebrovascular Accident with 11 cases. As with the morbidity cases, most of the deaths were related to respiratory and lifestyle diseases.

	Table 2-36. Leading Causes of Worklandy in Sison (2014-2016)													
	20	014				20	015					2016		
CAUSES	MALE	FEMALE	TOTAL	RATE	CAUSES	MALE	FEMALE	TOTAL	RATE	CAUSES	MALE	FEMALE	TOTAL	RATE (%)
				(%)					(%)					
Senility	26	41	67	1.48	Senility	20	38	58	1.27	Senility	14	25	39	0.85
Cerebrovascular Accident	22	15	37	0.81	Cancer	18	11	29	0.63	Cancer	10	19	29	0.63
Cancer	17	13	30	0.66	Cerebrovascular Accident	13	13	26	0.57	Pneumonia	13	10	23	0.5
Pneumonia	13	3	16	0.35	Pneumonia	9	13	22	0.59	Accident	5	8	13	0.28
Myocardial Infraction	8	4	12	0.26	Myocardial Infraction	8	8	16	0.35	Cerebrovascular Accident	8	4	12	0.26
Hypertension	5	7	12	0.26	Cardiovascular Accident	11	3	14	0.3	Hypertension	3	6	9	0.19
Pulmonary Tuberculosis	4	5	9	0.19	Pulmonary Tuberculosis	6	4	10	0.21	Myocardial Infraction	3	5	8	0.17
Asthma	4	4	8	0.17	Asthma	5	4	9	0.19	Diabetes Mellitus	3	5	8	0.17
Chronic Obstructive Pulmonary Disease	7	0	7	0.15	Diabetes Mellitus	2	5	7	0.15	Pulmonary Tuberculosis	4	2	6	0.13
Renal Disease	4	5	9	0.13	Septicemia	3	3	6	0.13	Anemia	2	2	4	0.08

Table 2-58: Leading Causes of Mortality in Sison (2014-2018)

	201	7			2018							
CAUSES	MALE	FEMALE	TOTAL	RATE (%)	CAUSES	MALE	FEMALE	TOTAL	RATE (%)			
Senility	29	37	66	1.3	Cerebrovascular Accident	5	6	11	0.21			
Pneumonia	17	12	29	0.57	Cancer	6	0	6	0.11			
Cerebrovascular Accident	18	10	28	0.55	Acute Debilitating Disease	3	2	5	0.09			
Myocardial Infraction	19	5	24	0.47	Accident	4	0	4	0.7			
Cancer	12	10	22	0.43	Pneumonia	1	2	3	0.5			
Cardiovascular Disease	9	5	14	0.27	Bronchial Asthma	1	2	3	0.5			
Chronic Obstructive Pulmonary Disease	7	1	8	0.15	Myocardial Infraction	2	0	2	0.03			
Accident	6	1	7	0.13	Diabetes Mellitus	0	2	2	0.03			
Severe Malnutrition	2	4	6	0.11	Pulmonary Tuberculosis	1	1	2	0.03			
Pulmonary Tuberculosis	4	1	5	0.09	Severe Malnutrition	0	1	1	0.02			

Source: Comprehensive Land Use Plan of Sison

Municipal Health Office of Sison

- ³⁵³ **Table** 2-59 presents the common diseases that affect the households in the project impacts area. Based on the respondents, almost all of the respondents from the 5 impact barangays were able to experience having cough or flu, and in Brgy. Labayug, 45 or (98%) have experienced it. This was followed by fever or headache, with all 5 impact barangays having experienced it.
- ³⁵⁴ Further, a good percentage of the respondents mentioned that they or their family members had diarrhea.
- ³⁵⁵ It can be noted that respiratory illnesses or diseases were relatively low in all 5 impact barangays.

Municipality	S	ison	-	ison	S	ison	S	ison	S	ison	Poz	orrubio
Barangay					Inmalog		Calunetan		Sugcong			
Respondents		46		19		60		60		50		60
Category	No.	% total	No.	% total	No.	% total	No.	% total	No.	% total	No.	% total
Fever, headache	31	67%	10	53%	32	53%	39	65%	27	54%	28	47%
Cough, flu	45	98%	15	79%	37	62%	46	77%	44	88%	38	63%
Diarrhea	20	43%	2	11%	5	8%	21	35%	21	42%	11	18%
Dengue, malaria	1	2%	1	5%	1	2%	3	5%	2	4%	1	2%
Respiratory diseases	1	2%	1	5%	0	0%	0	0%	4	8%	3	5%
Heart diseases	1	2%	0	0%	1	2%	4	7%	2	4%	4	7%
Others	1	2%	1	5%	0	0%	5	8%	1	2%	11	18%
No Answer	0	0%	1	5%	3	5%	4	7%	1	2%	5	8%

Table 2-59: Common Diseases that Affect the Households in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Safety Statistics of NCC

- Table 2-60 and Table 2-61 present the safety statistics of Northern Cement Corporation and its service contractors for the years 2018 to 2019, respectively. For 2018, a total of 1,119,896 manhours were rendered by NCC employees with only 5 non-loss time accidents (NLTA) and 3 non-fatal loss time accidents (LTA). In addition, for 2019 (June), a total of 550,316 man-hours were rendered by NCC employees with only 3 non-fatal LTAs.
- ³⁵⁷ For **Northern Cement Corporation's** service contractors, a total of 4,589,330 man-hours were rendered in 2018 with only 6 non-LTAs and 5 non-fatal LTAs. Further, in 2019 (June), a total of 3,053,652 man-hours were rendered by the service contractors, with only 11 non-LTAs.

Table 2-60: Safety Statistics of NCC and its Contractors (2018)

NORTHERN CEMENT CORPORATION

NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

MONTHS	NON-LOST	MANHOURS WORKED			
	TIME	LOST T NON-FATAL	FATAL	DAYS LOST	WORKED
A. NORTHERN CEME					
January	0	0	0	0	90,579
February	1 (Male)	0	0	0	90,038
March	0	0	0	0	92,467
April	0	0	0	0	91,592
May	0	1 (Male)	0	3	91,498
June	0	0	0	0	95,267
July	0	1 (Males)	0	0	102,339
August	2 (Males)	0	0	5	90,986
September	0	0	0	0	99,965
October	0	0	0	0	89,659
November	0	0	0	0	91,524
December	2 (Males)	1 (Male)	0	22	93,982
TOTAL	5	3	0	30	1,119,896
B. SERVICE CONTRAC	CTORS				
January	3 (Males)	0	0	0	323,713
February	1 (Male)	0	0	0	335,018
March	2 (Males)	0	0	0	335,515
April	0	0	0	0	293,096
Мау	0	1 (Male)	0	12	313,577
June	0	4 (Males)	0	9	370,671
July	0	0	0	0	380,803
August	0	0	0	0	405,383
September	0	0	0	0	394,694
October	1	0	0	0	443,409
November	0	0	0	0	503,602
December	0	0	0	0	489,849
TOTAL	6	5	0	21	4,589,330

Source: Northern Cement Corporation

Table 2-61: Safety Statistics of NCC and its Contractors (2019)

MONTHS		ACCID	ENTS		MANHOURS		
	NON-LOST	LOST T	IME	DAYS LOST	WORKED		
	TIME	NON-FATAL	FATAL				
A. NORTHERN CEME	NT CORPORAT	ION					
January	0	0	0	0	93,456		
February	0	0	0	0	90,896		
March	0	0	0	0	87,780		
April	0	0	0	0	96,488		
Мау	0	1 (Male)	0	7	88,725		
June	0	2 (Males)	0	39	92,971		
TOTAL	0	3	0	46	550,316		
B. SERVICE CONTRA	CTORS						
January	1 (Male)	0	0	0	479,772		
February	5 (Males)	0	0	0	528,329		
March	0	0	0	0	538,744		
April	3 (Males)	0	0	0	515,306		
Мау	2 (Males)	0	0	0	515,306		
June	0	0	0	0	476,195		
TOTAL	11	0	0	0	3,053,652		

Source: Northern Cement Corporation

2.4.7 Generation of Local Benefits from the Project

- ³⁵⁸ In terms of generation of local benefits, the proposed project will generate positive impacts. The project will not adversely affect the employment, livelihood, and income of the residents; on the contrary, it may even provide income opportunities.
- ³⁵⁹ The positive impacts of the project are the following:
 - generation of additional source of income and livelihood;
 - additional revenue for the local government;
 - increased basic social services; and
 - addition and improvement of local residential dwellings.
- ³⁶⁰ These benefits were further enhanced through the implementation of various social development programs responsive to local needs in the impact area.

Livelihood

- ³⁶¹ Based on the Comprehensive Land Use Plan of Sison, the primary drivers of the economy in the municipality are agriculture and quarrying/mining.
- ³⁶² For the Municipality of Pozorrubio, the municipality is primarily engaged in agricultural activities.

Income Sources

³⁶³ In terms of income sources of the households (**Table** 2-62) in 3 out of 5 impact barangays, majority are from farming. In Barangay Paldit, most of the respondents were earning their living by being a private employee (30%). A good percentage of the respondents were engaged in the transportation and labor services.

Municipality	S	ison	S	ison	S	ison	S	ison	S	ison	Poz	zorrubio
			Lab	ayug S.								
Barangay	La	bayug	Sag	uitlang	Р	aldit	Ini	nalog	Cal	unetan	Su	ugcong
Respondents		46	19			60		60	50		60	
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
Barangay Official	2	4%	0	0%	4	7%	7	12%	3	6%	4	7%
Government Employee	2	4%	1	5%	2	3%	1	2%	1	2%	1	2%
Private Employee	7	15%	0	0%	18	30%	2	3%	0	0%	4	7%
Laborer/Contractor	2	4%	0	0%	15	25%	8	13%	13	26%	6	10%
Tricycle/Jeepney Driver	5	11%	2	11%	6	10%	10	17%	3	6%	3	5%
Farmer	10	22%	14	74%	4	7%	20	33%	22	44%	15	25%
Fisherfolk	0	0%	0	0%	0	0%	1	2%	0	0%	0	0%
Own Business	2	4%	0	0%	0	0%	5	8%	0	0%	2	3%
None	1	2%	0	0%	3	5%	1	2%	3	6%	1	2%
Others	11	24%	1	5%	5	8%	5	8%	4	8%	23	38%
No Answer	4	9%	1	5%	3	5%	0	0%	1	2%	1	2%

Table 2-62: Income Sources of Households in the Project Impact Area

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Average Monthly Income

- ³⁶⁴ In terms of income profile of the households (**Table** 2-63), in all impact barangays, majority of the respondents mentioned that they were just earning, on the average, between Php 0.00 to 5,000.00 a month. There were below (20%) of the respondents in all impact barangays who mentioned that they were earning between Php 5,001.00 to 15,000.00 a month.
- ³⁶⁵ Based on the PSA average family income in 2015, the estimated average family income for the Filipino families is Php 22,000.00 or Php 267,000.00 per year. Given the responses, most of the

families in the impact barangays were earning way below the national average family income. It can be noted that in the average family expenditure was pegged at Php 215,000.00 pesos per year.

Municipality	s	ison	s	ison	S	ison	S	ison	S	ison	Poz	orrubio
Barangay	Lal	bayug		ayug S. uitlang	Р	aldit	Ini	nalog	Calı	unetan	Sı	ıgcong
Respondents		46		19		60		60		50		60
Category	No.	%	No.	%	No.	%	No.	%	No.	%	No.	% total
		total		total		total		total		total		
0-5,000 PHP	23	50%	13	68%	26	43%	35	58%	44	88%	39	65%
5,001-10,000 PHP	6	13%	1	5%	10	17%	12	20%	3	6%	10	17%
10,001-15,000 PHP	8	17%	2	11%	7	12%	7	12%	0	0%	2	3%
15,001-20,000 PHP	0	0%	1	5%	5	8%	0	0%	1	2%	0	0%
More than 20,000 PHP	3	7%	1	5%	5	8%	0	0%	0	0%	1	2%
No Answer	6	13%	1	5%	7	12%	6	10%	2	4%	8	13%

Table 2-63: Income Profile of Households in the Project Impact /	Area
Table 2-03. Income Frome of Households in the Froject impact /	11Ca

Note: Based on the Socio-Economic and Perception Survey conducted on July 2019

Employment Statistics of NCC

- Table 2-64 presents the number of Northern Cement Corporation living in the host municipality, Sison, Pangasinan. As indicated in the table, there are around 327 employees living in Sison and 258 (78.9%) of which are living within the SDMP barangays of Northern Cement Corporation. Further, Barangay Paldit is home to (67%) of the employees living in Sison, while only (12%) are living in Barangay Labayug (Host Barangay).
- ³⁶⁷ At present, the total number of employees working in the cement operations of **Northern Cement Corporation** is 486.

Table 2-64: Barangay Residences of NCC Employees (Sison, Pangasinan)

NO.	BARANGAYS	NO. OF EMPLOYEES LIVING IN SISON
1	Paldit	218
2	Labayug	38
3	Inmalog	1
4	Gorgordion	10
5	Pindangan	5
6	Cauringan	3
7	Asan Sur	27
8	Bila	14
9	Saguitlang	1
10	Landingan	1
11	Asan Norte	2
12	Poblacion Norte	4
13	Poblacion Sur	2
14	Amagbagan	1
	TOTAL	327

Source: Northern Cement Corporation

³⁶⁸ There are 23 service contractors of **Northern Cement Corporation** working on the cement plant operations, as presented in **Table** 2-65. From the table, there are around 2,143 contractor personnel, which is disaggregated by 76 females and 2,067 males.

Table 2-65: NCC Contractors (with Employees)

NO.	NAME OF CONTRACTORS	FEMALE	MALE	TOTAL
1	ALL ASIA	3	131	134
2	ALLEN ENG'G	0	53	53
3	AMPANI	1	30	31
4	ANTA	4	133	137
5	ARCHEN	3	13	16
6	CATHAY INDUSTRIAL	0	34	34
7	DELTA CONSTRUCTION	3	67	70
8	DELTA QUARRY	13	84	97
9	DISSCOR	6	45	51
10	EBATECH	1	12	13
11	E.C.D.I.	5	68	73
12	E.E.I.	7	386	393
13	GBH CONSTRUCTION	4	86	90
14	НАҮАМА	0	31	31
15	LAWIN	2	26	28
16	M.E.B.	2	170	172
17	PIEDRA	1	21	22
18	PNWLC	1	13	14
19	POSITIF	4	163	167
20	SANTA CROCE	11	273	284
21	SD PLATOON	0	22	22
22	TEKTON	1	18	19
23	UNIMAN	4	188	192
	TOTAL	76	2,067	2,143

Source: Northern Cement Corporation

- Table 2-66 presents the geographic demographics of the service contractors manpower living in the municipalities of Sison and Pozorrubio, Pangasinan. From the table, around 1,231 contractors are situated in the abovementioned municipalities. Around (71%) of which are from Sison and 592 (68%) are living in the SDMP barangays in Sison. For Pozorrubio, around (35%) of the contractors are residing in the impact barangay (Barangay Sugcong).
- ³⁷⁰ These information and employment statistics indicate that a good portion of the employees, both **Northern Cement Corporation** and its contractors, are employed within the host municipality and nearby municipalities in Pangasinan.

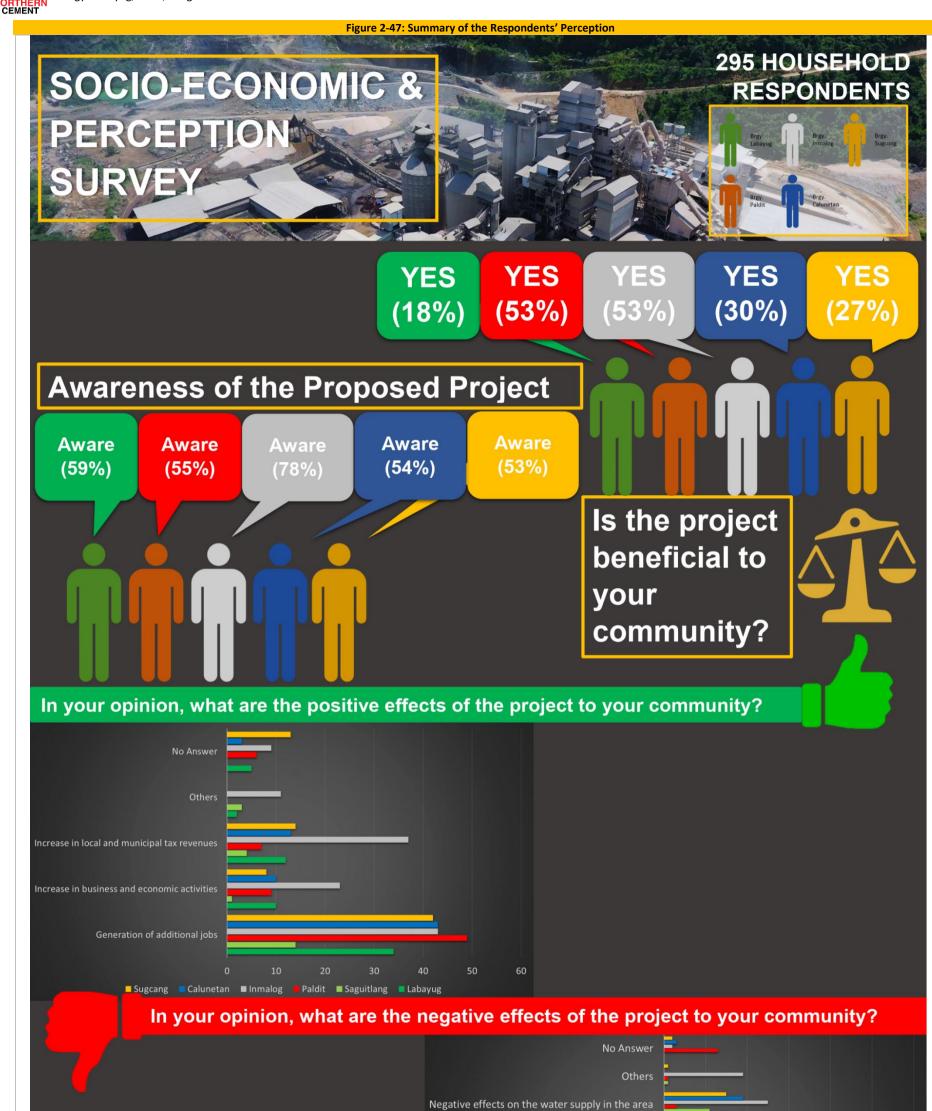
	SISO	N	POZORRUBIO				
NO.	BARANGAYS	NCC CONTRACTORS	NO.	BARANGAYS	NCC CONTRACTORS		
1	Agat	2	1	Alipangpang	13		
2	Alibeng	8	2	Amagbagan	7		
3	Amagbagan	13	3	Balacag	2		
4	Artacho	1	4	Banding	0		
5	Asan Norte	5	5	Bantugan	0		
6	Asan Sur	101	6	Batakil	10		
7	Bantay Insik	0	7	Bobonan	12		
8	Bila	74	8	Buneg	15		
9	Binmeckeg	1	9	Cablong	2		
10	Bulaoen East	1	10	Casanfernandoan	0		
11	Bulaoen West	1	11	Castaño	1		
12	Cabaritan	6	12	Dilan	6		
13	Calunetan	19	13	Don Benito	0		
14	Camangaan	6	14	Haway	1		

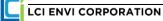
Table 2-66: Barangay Residences of NCC Contractors	(Sison and Pozorruhio Dangasinan)
Table 2-00. Dataligay Residences of Nec Contractors	(JISOII and FOZOITUDIO, Fangasinan)

	SISON	I	POZORRUBIO			
NO.	BARANGAYS	NCC CONTRACTORS	NO.	BARANGAYS	NCC CONTRACTORS	
15	Cauringan	11	15	Imbalbalatong	24	
16	ECJ Housing	6	16	Inoman	15	
17	Dungon	0	17	Laoac	4	
18	Esperanza	2	18	Maambal	2	
19	Inmalog	72	19	Malasin	2	
20	Killo	10	20	Malokiat	2	
21	Labayug	214	21	Manaol	1	
22	Paldit	287	22	Nama	9	
23	Pindangan	0	23	Nantangalan	0	
24	Pinmilapil	1	24	Palacpalac	11	
25	Poblacion Central	9	25	Palguyod	4	
26	Poblacion Norte	6	26	Poblacion I	2	
27	Poblacion Sur	14	27	Poblacion II	0	
28	Sagunto	3	28	Poblacion III	4	
29	Tara-tara	1	29	Poblacion IV	2	
	TOTAL	874	30	Rosario	15	
			31	Sugcong	125	
			32	Talogtog	3	
			33	Tulnac	0	
			34	Villegas	63	
				TOTAL	357	

Source: Northern Cement Corporation

2.4.8 Traffic Congestion


- ³⁷¹ Public transportation options in the area include buses, jeepneys and tricycles that travel to neighboring barangays and neighboring cities/municipalities. Residents also have private vehicles ranging from cars, vans, tricycles and motorcycles.
- An estimated 25% increase in additional trucks per day will come in and out of the plant site, on top of the existing plant operations. However, traffic congestion will not be a concern given that the access road to and from the plant site is private. Furthermore, Northern Cement Corporation will allocate additional parking area to complement the existing truck marshalling area within existing cement plant complex.
- ³⁷³ Traffic may also increase in the National Road (Maharlika Highway) due to delivery trucks coming in and out of the cement complex. Traffic congestion shall be mitigated with the support of the surrounding Local Government Units (LGUs) in terms of scheduling and handling the flow of traffic near the project area.
- ³⁷⁴ To mitigate the said impact, **Northern Cement Corporation** shall develop a traffic management plan with the LGU of Sison. The following measures were included in the plan:
 - Coordination with LGU of Sison and surrounding LGUs;
 - Lane designation and speed limit;
 - Regulation of truck deployment;
 - Provision of safety barriers, warning signs and lights, traffic marshals within the vicinity of project sites, and adequate parking spaces;
 - All deliveries of construction materials and heavy equipment, either inbound or outbound of the facility may be done during off-peak hours and at designated delivery hubs located near the Project area to prevent blockage of traffic flow along public roads; and


 Assistance of security personnel in directing traffic of vehicles coming in and out of the facility.

2.4.9 Social Acceptability and Perception

³⁷⁵ **Figure** 2-47 summarizes the social acceptability and perception of the 295 respondents from Barangays Labayug, Paldit, inmalog, Calunetan and Sugcong regarding the proposed expansion project.

						_				
			Land po	Ilution		-				
			Additional g	arbage	_	_				
			Water po	Ilution		_	-	- 101		
			Noise po	llution			-			
			Air po	llution		_	_		•	-
NOTE: For presentation nurnoses. Sitio Seguitle	and was included in Broy Labavud			0	10	20	30	40	50	60
NOTE: For presentation purposes, Sitio Saguitla	ang was included in Brgy. Labayug	Sugcang	Calunetan		10 Paldit			40 Labayug		60
	FIGURE TITLE:							Labayug		
NOTE: For presentation purposes, Sitio Saguitta								Labayug	3	
	FIGURE TITLE:					Saguit		Labayug	FIGURE N	

2.4.10 Summary of Baseline Findings, Impacts and Mitigation on People

³⁷⁶ The following table lists the impacts and mitigation on People.

Table 2-67: Summary of Significant Baseline Findings and Potential Impacts and Mitigation on People

Summary of Baseline Findings on People:

- Water supply sources in Sison and Pozorrubio include piped connection, deep wells, shallow wells and spring sources.
- Sison is served by 2 power supply service providers namely: Benguet Electric Cooperative (BENECO) and La Union Electric Cooperative (LUELCO).
- The municipality of Pozorrubio is served by a power supply service provider namely: Pangasinan III Electric Cooperative, Inc. (PANELCO III).
- The consistent leading cause of morbidity in Sison (2014-2018) was Hypertension and Upper Respiratory Tract Infection.
- Based on the perception survey, (~60%) of all the respondents have prior knowledge about the proposed project. (36.2%) of the respondents believed that the proposed project would be beneficial for their respective communities.
- The most cited potential positive impact of the project for the impact Barangays is employment generation (76%), followed by increased local tax revenue collection (28%).
- Conversely, the most cited potential negative impact of the project is air pollution (84%), followed by water (45%) and land (33%) pollution.

POTENTIAL IMPACTS	PROJECT PHASES	DESCRIPTION	MITIGATING MEASURE
In-migration	N/A	The project only requires 86 manpower for construction and 306 manpower in operation	Prioritization of hiring qualified local workers
Cultural/Lifestyle Change	Operation	No known IPs residing near or within the project area, hence no perceived cultural and lifestyle changes (for IPs) expected to result from the project Increase in income can introduce and expose workers and community to vices that tend to undermine morality	Coordination with barangay LGUs and PNP to enforce law to avoid vice- related problems in the community Strict implementation of a drug and alcohol-free work environment Installation of CCTVs in strategic places
Threat to Delivery of Basic Services/ Resource Competition	Construction Operation	The project will have minimal effect in terms of resource competition with nearby households. Project's water requirement is for maintenance and domestic use. There will be a construction of a new deep well for the project. The project will be served by the NCC substation to power the offices and utilities to be constructed within the project area	N/A
Threat to Public Health and Safety	Construction Operation	Dust may cause negative health effects (i.e., respiratory) to the community and workers if not properly mitigated	Conduct of medical missions and regular check-ups to workers and host barangay

POTENTIAL IMPACTS	PROJECT PHASES	DESCRIPTION	MITIGATING MEASURE
		Crime incidence may also increase in the local community	Coordination with Municipal Health Officer (MHO) and barangay health units to address health-related needs of the community
			Coordination with barangay officials to ensure peace and order among workers and community members
Generation of Local Benefits from the Project	Operation	Generation of additional source of income and livelihood	Implementation of social development programs that are responsive to
		Additional revenue for the local government	local needs in the impact area
		Increased basic social services Addition and improvement of local	
		residential dwellings	
Traffic Congestion	Construction Operation	Increase in traffic generation in the area due to delivery trucks coming in and out of the cement plant complex	Coordination with LGU on scheduling and handling the flow of traffic near the project area

SECTION 3

ENVIRONMENTAL MANAGEMENT PLAN

3.1 Impacts during Construction Phase

3.1.1 Physical Environment

3.1.1.1 Land

³⁷⁷ The major impacts during construction phase are solid waste production and possible soil contamination.

Generation of Solid Wastes

- ³⁷⁸ Construction wastes such as fill materials, empty cement bags, wood, steel and other construction spoils are expected to be generated during the construction phase of the expansion project. Aside from this, the construction workers will be generating domestic solid wastes. A solid waste management plan will be developed and implemented by the contractors with the supervision of NCC.
- ³⁷⁹ A temporary storage area for the solid wastes will be provided on site. All the solid wastes prior to hauling out will be segregated properly. Hauling-out of the solid wastes for disposal will be done by accredited service providers. Details that shall be considered in the development of the waste management plan are discussed in Section 3.5.

Generation of Hazardous Wastes

³⁸⁰ Hazardous wastes such as used oil, grease, aerosols, paint containers and used bulbs will also be potentially generated during the construction. Hazardous wastes must be managed and disposed in accordance to RA 6969. A temporary hazardous waste storage area will also be provided in the site. All hazardous wastes will be properly sealed to ensure that there will be no leakage in the environment. Only DENR-accredited waste service providers must collect the hazardous wastes in the project site.

Soil Contamination

³⁸¹ Since heavy equipment will be used during construction, there is a risk of soil contamination due to possible oil spills during maintenance activities of the heavy equipment. It is advisable to use sawdust, rice hulls, or coir dusts to absorb accidental oil spills.

3.1.1.2 Water

Groundwater and Surface Water Contamination

³⁸² Domestic wastewater will be generated by the construction workers. Wastewater, if untreated prior to disposal, can cause water pollution and may pose health hazards to the nearby communities. Temporary sanitation facilities (e.g., toilet, bathing facilities) to be provided by the Contractor at the construction site shall be regularly maintained by assigned construction workers or hired service crew.

3.1.1.3 Air and Noise

Gaseous Emissions

³⁸³ Gaseous emissions from heavy equipment and generators used in the construction site will produce short-term impacts on the ambient air quality. An increased concentration of carbon monoxide (CO), sulfur dioxide (SO₂), and nitrogen dioxide (NO₂) may be realized in the ambient air. This impact may not be a primary concern, since the construction phase will only take several months until project completion. Nevertheless, heavy equipment must be kept in prime condition at standard air and fuel ratio in order to limit gaseous emissions, particularly total suspended particulates (TSP). Diesel fuel products emit TSP, SO₂ and nitrogen oxides (NO_x) due to the hydrocarbon and sulfur content. If possible, all heavy equipment shall be fitted with exhaust mufflers.

Noise Generation

³⁸⁴ Noise may also be generated by construction operations and equipment. Although construction works are expected to occur regularly, the impacts may be considered temporary.

EQUIPMENT			DISTANCE (M)		
	15	30	60	120	240
Front Loader	75	69	63	57	51
Backhoes	85	79	73	67	61
Graders	88	82	76	70	64
Trucks	91	85	79	73	67
Concrete Mixers	82	79	73	67	61
Cranes	83	77	71	65	59
Generators	78	72	66	60	54
Compressors	81	75	69	63	57
Pumps	76	70	64	58	52
Pile Drivers	101	95	89	83	77
Jackhammers	88	82	76	70	64

Table 3-1: Expected Noise Levels from Heavy Equipment, db(A)
---	---

Source: Larry W. Canter, Environmental Impact Assessment, New York, 1977

Table 3-2: DENR Standards for Noise Levels in General Areas, db(A)

TI	ME			CATEGORY AREA		
		AA	А	В	С	D
Day Time (9am-6pm)		50	55	65	70	75
Morning/Ev (5am-9am) 10pm)	vening	45	50	60	65	70
Night Time (10pm-5am)	40	45	55	60	65
Note:	Area AA:	0	uous area which re , nursery school, hc	• • •		
	Area A:	Section or contigu	uous area which is	primarily used for r	esidential purpose	s.
	Area B:	Section or contigu	uous area which is	primarily a comme	rcial area.	
	Area C:	Section primarily	reserved as a light	industrial area.		
	Area D:	Section which is p	primarily reserved a	is a heavy industria	l area.	
Source: LIP N	ICTS Environme	ntal Text Series				

Source: UP NCTS Environmental Text Series

3.1.2 Biological Environment

- ³⁸⁵ The expansion of the NCC Line 1 and Line 2 will not involve removal of vegetation since the expansion will be situated in a developed area already.
- ³⁸⁶ However, anthropogenic movements, noise, and vibrations may drive wildlife away from the ecosystem and may cause temporary or permanent migration of the faunal species in other or nearby areas/habitat where disturbance is less. Ecosystem conservation and rehabilitation are recommended prior to and after construction and operation.

3.1.3 Socio-Economy

Accessibility and Circulation Concerns

³⁸⁷ Traffic is not an issue in the project area at present. However, heavy equipment mobilization may affect travel time and road condition. Early notice to the public of upcoming activities is an obligation of the Contractor. Installation of early warning device installations is a part of this mitigating measure. In the instance where roads are starting to deteriorate, the Contractor should immediately provide fillings to the potholes created by hauling trucks and other heavy equipment. Excavated materials shall be placed in a suitable location that will not cause severe disruption to road traffic.

Local Economy

³⁸⁸ The project is expected to have a positive impact on the local economy of the host community with an increase in business opportunities, such as food retail, housing rental, and other services to the construction workers. This is in addition to the employment opportunities that will be available to the local workforce.

Population

A temporary increase in population may occur during the construction phase as workers are brought into the area. Local labor will be sourced to meet the work force required by the construction. However, there may be cases were transient settlers may opt to stay in Barangay Labayog permanently (e.g. marriage, work opportunities, and etc.), thus increase in population may be realized. Consequently, there may be need for improved basic social services in the area.

Peace and Order

³⁹⁰ Presence of outsiders (i.e., migrant workers) can bring about difference in views and perspectives and new influence changing attitudes and bias. Peace and order may be upheld through strict law enforcement, regular patrolling, and apprehension of erring individuals.

3.1.4 Health and Safety

- ³⁹¹ Construction may pose danger to vehicles, equipment, and even people. Accidents can be prevented through the installation of enclosures, early warning devices, and other protective means within and around the working area. The Contractor will be required to submit an Occupational Safety and Health Plan (OSHP), based on the Department of Labor and Employment (DOLE) DO No. 13 Series of 1998, that covers the safety of the workers and the community.
- ³⁹² Potential health and safety risks may also arise from dust, pollutants, noise and vibration to be generated from construction activities. Workers, particularly those operating heavy equipment, must be provided with personal protective equipment (PPE), such as earmuffs.

3.2 Impacts during Operational Phase

3.2.1 Physical Environment 3.2.1.1 Land

Generation of Solid Wastes

³⁹³ The operation of the cement plant is generating domestic solid wastes from its workers. With the expansion project, it is expected that the generated solid wastes will be increased. NCC is implementing its Solid Waste Management Program in its operation. It also has a materials recovery facility and practices composting in its nurseries. The quarry also generates mine wastes which are being used for backfilling.

Generation of Hazardous Wastes

³⁹⁴ Hazardous wastes generated by the project are used bulbs, oil and grease, empty chemical containers and others. These wastes are handled and disposed in accordance to RA 6969.

3.2.1.2 Water

<u>Oil Spill</u>

³⁹⁵ Oil spills from vehicle and equipment repair and maintenance may impact the ambient quality of the nearby surface water and groundwater during the operational phase. As a preventive measure, repair and maintenance are being done in a designated area with concrete flooring and canals constructed to channel any oil spills. Oil and water separator tanks are also installed in these areas.

Siltation

³⁹⁶ The quarry operation, especially during blasting, are also generating soil sediments that may be carried to the nearby creeks during heavy rain. This may increase the sediment yields of the receiving body of water. Siltation ponds are constructed in strategic areas within the cement plant and quarry area to pre-treat the surface run-off. These ponds are regularly maintained and desilted to prevent water pollution.

Domestic Wastewater Generation

- ³⁹⁷ Workers of the cement plant are also generating domestic wastewater. It is expected that with the expansion project, there will also be an increase on the number of workers thus, increase in the generation of domestic wastewater. Untreated domestic wastewater when discharged may cause water pollution., affecting the ecosystem of the nearby river.
- ³⁹⁸ On-site sanitation facilities with septic tanks are provided in the project site. The effluent of the septic tanks is discharged to the ponds.

Ground subsidence

³⁹⁹ The quantity of water supply may also be affected with the expansion project. Additional deep wells will be constructed to supply the additional water requirements of the project. Since the water supply is mainly from deep wells, ground subsidence may occur from excessive pumping, especially during dry seasons where lowering of groundwater table is normally experienced.

3.2.1.3 Air and Noise

Dust Generation

- ⁴⁰⁰ Dusts are generated during the quarry operation, the transport of quarried minerals to the cement plant and the operation of the cement plant specially in the bagging section. Too much exposure to dusts presents serious risks to human health. Dusts may cause irritation of the eyes, coughing and sneezing. Particulate matters when inhaled can also cause respiratory and cardiovascular diseases.
- ⁴⁰¹ To minimize the dust emissions, covers are provided to the delivery trucks and regular sprinkling of the dirt roads is being done. As installed in its Line 1 and Line 2 cement production facilities, NCC will continue to utilize high-efficient equipment with baghouse filters and electrostatic precipitators to minimize and contain the fugitive dusts generated in its operation.

Gaseous emissions

⁴⁰² Combustion of diesel fuel from the operation of heavy equipment for the quarry as well as cement plant equipment may emit pollutants such as CO, SO₂ and NO_x. All heavy equipment must be properly and regularly maintained to minimize their potential pollution emissions.

Noise and vibration

- ⁴⁰³ Noise and vibration maybe observed during the blasting activity in the quarry area. However, this impact will only be temporary because the noise will only occur for a split second during the blasting and a few seconds after the blasting due to the falling of rocks.
- ⁴⁰⁴ The operation of the heavy equipment and the machines may also generate noise and vibration. Continuous exposure to high noise intensity can cause hearing impairment which is irreversible. To reduce the occurrence and intensity of the noise and vibration, suppressers or mufflers will be installed.

3.2.2 Biological Environment

Vegetation

- ⁴⁰⁵ Areas that have been cleared of its natural vegetation may either regenerate original or similar species from residual plant parts. Vegetation succession about the project site shall sporadically grow with or without anthropogenic assistance.
- ⁴⁰⁶ Vegetation may be allowed to grow in the vicinity or structures unless they may promote system malfunction or are hazardous to people. Plant species with intrusive roots, moss, molds, lichens, and others that can cause damage to the structures installed for the excellent operation of the facilities should be removed and re-planted to a designated location if these species have economic, aesthetic, and ornamental importance.

<u>Wildlife</u>

⁴⁰⁷ Wildlife may find habitat in built structures in the long run. Unless the animals sighted pose danger, damage, or malfunction to the facility, structures must be maintained to encourage biological diversity succession. Constant monitoring and evaluation of species survival within identified habitat and those residing in the project site shall be conducted.

3.2.3 Socio-Economy

Local Economy

- ⁴⁰⁸ The expansion project may provide employment opportunities to qualified local residents which may become their source of income. The expansion project may also create various opportunities for retailing, services, buy and sell, and others. The basic needs of the community continue to grow, and these needs must be met. This is where the law of supply and demand comes in. Enterprising residents of the surrounding barangays can therefore look at the needs of the new occupants of the project and their dependents so that they can prepare what appropriate investment response will they adopt to earn some income.
- ⁴⁰⁹ The expansion project will also continually provide additional revenues for the local government in terms of taxes and dues. Laws and ordinances on tax collection and land registration must be properly implemented.

Population

⁴¹⁰ Transient settlers may opt to stay permanently thus increase in population may be realized. Continuous improvement of infrastructures and support services for local constituents and in coming visitors is advised.

Peace and Order

⁴¹¹ Partiality between local residents and newcomers or migrant workers may occur. Peace and order may be upheld through strict law enforcement, regular patrolling, and apprehension of erring individuals

3.3 Unavoidable and Residual Impacts

- ⁴¹² Implementation of the proposed mitigating measures discussed in previous sections is expected to leave residuals, which should not adversely affect the people and the vicinity. Noise and vibration generated by the machines and equipment are attendant consequences. However, these can be reduced to tolerable levels by the use of suppressers or mufflers and other measures identified in the preceding pages. Noise and vibration residuals should be as low as possible so as not to cause nuisance to workers and the public.
- ⁴¹³ Stacks of the cement plant also emit air pollutants. However, with proper design of the stack and the installation of air emission control devices, the impacts will be reduced.

3.4 Summary Matrix of Environmental Impact and Level of Significance

- ⁴¹⁴ The summary of identified environmental impacts and its corresponding mitigating measures is presented in **Table** 3-3. The table also shows the validation of the effectiveness of the mitigating measures implemented by **Northern Cement Corporation**. In-house procedures are established and being implemented to ensure that the environmental management plans are able to mitigate the impacts of the project.
- ⁴¹⁵ Waste management procedures are in place to manage all the wastes generated during the operation and to promote waste prevention, reduction and reuse. Proper segregation of the wastes is observed and are properly stored on-site prior to disposal. NCC also operates a materials recovery facility within the cement plant and also has a composting facility on-site.
- ⁴¹⁶ To prevent water logging and water pollution, an effective drainage system is already in place that can also accommodate the expansion of the project. Siltation ponds are also installed in strategic

areas within the cement plant and quarry to catch the surface run-off that will be generated in the project site. The siltation ponds and the drainage system are regularly maintained and desilted. Sanitation facilities and septic tanks are installed to prevent groundwater pollution due to percolation of domestic wastewater. To mitigate water pollution brought about by oil spills, a spill management plan is already in place. Fortunately, there are no recorded oil spills within the cement plant to date.

- ⁴¹⁷ To minimize water drawn from the creeks and deep wells, NCC is reusing desilted water from the siltation ponds for dust suppression and irrigation. Cooling water used in the cement plant is also being reused by NCC.
- ⁴¹⁸ Fugitive dust emission is also a main concern in the operation of the cement plant and quarry. NCC has installed bag filters and electric precipitators in areas that generates dusts. Regular watering of the roads is also being done by NCC to prevent fugitive dust emissions caused by the vehicles. Results of ambient air monitoring prove that particulate matter and total suspended solids are being controlled and are within DENR standards.
- ⁴¹⁹ The operation of the cement plant also emits air pollutants such as carbon monoxide, sulfur oxide and nitrogen oxide that are caused various machineries in the plant. Proper maintenance of the equipment and installation of air emission control devices were done by NCC to mitigate these emissions. Continuous Opacity Monitoring Systems (COMS) are being utilized by the plant to monitor emissions. The stack monitoring shows that particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide are being controlled by the various mitigating measures that are already in place.
- ⁴²⁰ Northern Cement Corporation prioritizes the health and safety of all its workers. The company has its Safety and Health Policy in place to ensure the implementation of its occupational health and safety plan. The policy includes the conduct of regular safety meetings, provision of PPEs, safety inspections and regular health check-up of the workers.

		1		of Environmental Impacts		1		
ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
Construction P	hase			·		·	·	
Construction and installation, including site facilities	The Land	Accumulation of construction debris and other solid waste	 Implementation of the solid waste management program by the contractor Regular transport of construction debris and other solid waste in the approved designated area by the DENR. 	 NCC implements waste management procedures which include solid waste management procedure and scrap management procedure. NCC operates an MRF. Waste is temporarily held in this area before disposal. 	During the entire duration of construction activity	Covered by contract amount of Contractor Php40,000	Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The Land	Generation of hazardous wastes	 Collect, store and dispose hazardous wastes in accordance to RA 6969 Treatment and dispose of hazardous wastes through DENR- 	 NCC implements hazardous waste management procedure. 	During the entire duration of construction activity	Covered by contract amount of Contractor	Northern Cement Corporation	Contractor's EMP, Site Inspection Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
	The Water	 Possible siltation and surface runoff Possible clogging of drainage due to siltation 	 accredited waste treaters Establishment of sediment traps, erosion barriers, and silt curtains Regular removal of silt and sediments 	 NCC already constructed siltation ponds in the cement plant and quarry areas NCC conducts regular maintenance of drainage system 	During the entire duration of construction activities	Covered by the contract cost of the contractor	Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The Air	 Generation of dust 	 Regular watering of construction site Apply canvas cover on construction materials to avoid long exposure to strong winds 	 NCC conducts regular watering of the roads. Water is allotted for watering 	During the entire duration of construction activities	Covered by the contract cost of the contractor	Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The People	 Health hazards from dust emissions 	 Implement dust control management Proper PPEs to workers 	NCC implements Safety and Health Policy	During the entire duration of construction activities		Northern Cement Corporation	Contractor's EMP, Site Inspection Report

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
Use of heavy equipment, during construction works	The Land	Ground vibration	 Apply non-vibration techniques during construction, if possible Notify nearby residents about use of heavy equipment For hauling trucks, comply with road weight limit standards to avoid ground vibration 		During the entire duration of construction activities		Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The Land/The Water	Surface and groundwater contamination due to accidental oil spills/leaks	 Use sawdust, rice hulls, or coir dusts to absorb the oil spills Maintain canal in the maintenance and repair area of vehicles and equipment 	 NCC implements oil spill management procedures Oil and water separator tanks are installed in the cement plant 	During the entire duration of construction activities		Northern Cement Corporation	Contractor's EMP, Site Inspection Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
	The Air	Generation of Air Emissions and Noise	 Regular maintenance of heavy equipment Perform noisy activities during daytime Establish and maintain green zone to serve as natural noise barrier. 	 Regular maintenance of equipment and vehicles are being done. NCC maintains the Sapid Forest that serves as natural buffer zone of the cement plant. 	During the entire duration of construction activities		Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The People	Traffic congestion	 Provide early warning devices/road signs Provide parking spaces within project site 	 Parking spaces are available inside the cement plant 	During the entire duration of construction activities	Covered by the contract cost of the contractor	Northern Cement Corporation	Contractor's EMP, Site Inspection Report
Influx of workers	The Land	Generation of solid waste	 Implement solid waste management plan Hauling of discarded items by accredited haulers 	 NCC implements waste management procedures which include solid waste management procedure and scrap 	During the entire duration of construction activity	Covered by contract amount of Contractor Php40,000	Northern Cement Corporation	Contractor's EMP, Site Inspection Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
				 management procedure. NCC operates an MRF. Waste is temporarily held in this area before disposal. 				
	The Water	Ground and surface water contamination from improper disposal of wastes, percolated wastewater, sludge and fecal matter.	 Provision of sanitation facilities for workers (e.g. toilets, showers, etc.) 	 Sanitation facilities and septic tanks are installed in the cement plant 	During the entire duration of construction activities	Covered by the contract cost of the contractor	Northern Cement Corporation	Contractor's EMP, Site Inspection Report
	The People	Occupational Health and Safety	 Proper training on construction safety Provision of PPE Proper supervision by trained professionals during construction activities 	 NCC implements Safety and Health Policy NCC has in-house physician 	During the entire duration of construction activities		Northern Cement Corporation	Contractor's EMP, Site Inspection Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEE
	The People	Employment opportunities	Priority in hiring should be given to residents of host communities	Residents in the host barangay are given priority	Construction Stage		Northern Cement Corporation	SDP
		Increased crime rate	Coordinate with barangay regarding imposition of laws and apprehension of erring individuals/groups of people	According to FGD conducted, residents do not have complaints regarding peace and order in the barangay	Construction stage		Northern Cement Corporation	SDP
Operation Pha Operation of cement plant	se Air quality	Dust generation during cement processing	 Operate and maintain filter bags and electric precipitators in the equipment. Assign sweepers to regularly remove dust in areas such as roads, parking areas, and other paved areas. Implement speed limit in the vicinity of 	 Results of ambient air monitoring are within DAO 2000- 81 National Ambient Air Quality Values. 	Operational stage	~P300,000	Northern Cement Corporation	Environment Monitoring Report

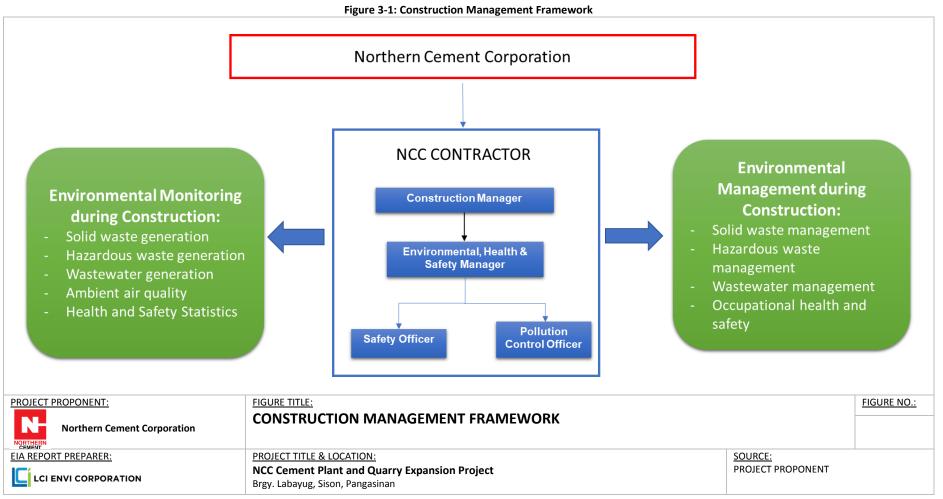
ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
			 the plant site to avoid re-suspension of dust. Raw material and product storage areas are enclosed 					
		Increased levels of CO, TSP, SO ₂ , NO _x brought about by vehicle and equipment emissions	 Operate and maintain electric precipitators, bag filters in the equipment Proper maintenance should be done for the vehicles and equipment 	Results of ambient air monitoring are within DAO 2000-81 National Emission Standards for Source Specific Air Pollutants	Operational stage	~P300,000	Northern Cement Corporation	Environmenta Monitoring Report
	The Water	Runoff from plant operations	 Installation and maintenance of drainage system within the plant Operate and maintain sedimentation ponds 	 Rainwater drainage is constructed and maintained in the cement plant. Sedimentation ponds are in place. NCC conducts maintenance of 	Operational stage	~P200,000	Northern Cement Corporation	Environmenta Monitoring Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE) sedimentation	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
	The Water	Ground and surface water contamination from improper disposal of wastes, percolated wastewater, sludge and fecal matter.	 Provision of sanitation facilities for workers (e.g. toilets, showers, etc.) 	 Sanitation facilities and septic tanks are provided in the cement plant Regular desludging of septic tanks is observed 	Operational stage	~P30,000	Northern Cement Corporation	Environmenta Monitoring Report
	The Water	Ground and surface water contamination due to oil spill from vehicles and equipment	 Use sawdust, rice hulls, or coir dusts to absorb the oil spills Maintain canal in the maintenance and repair area of vehicles and equipment 	 Oil spill management procedures is being implemented Oil-water tanks separators are installed in the cement plant 	Operational stage	~P50,000	Northern Cement Corporation	Environmenta Monitoring Report
	The People	Occupational Health and Safety	 Proper training on safety Provision of PPE 	NCC implements Safety and Health Policy	Operational stage		Northern Cement Corporation	Environmenta Monitoring Report
Quarry Operations	The People	Increased occupational health and	Proper storage of magazines	NCC contractor stores explosives approximately	Prior to and during blasting operations	Covered by contract	Northern Cement Corporation	Handling and Blasting Procedure

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
		safety risks because of explosives use	 Extensive training for selected personnel in handling and operating explosives Issuance of alarms and warning devices prior to and during blasting operations 	 800 meters away from the cement plant. No recorded accidents involving explosives to date NCC implements Safety and Health Policy 		amount of contractor		
	The Land	Wildlife habitat formation	Monitoring and evaluation of species survival within identified habitat and those residing in the project site	 NCC conducts greening projects in adjacent barren areas and conducts progressive rehabilitation of quarry site Mining Forest Program National Greening Program 	Operational stage	P100,000	Northern Cement Corporation	Environmenta Monitoring Report/AEPEF
	The Air	Dust generation during	 Watering of quarry site and road. 	Results of ambient air monitoring are within DAO 2000-81	Operational stage	~P300,000	Northern Cement Corporation	Environment Monitoring Report

ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
		quarrying and transport of limestone	 Provision of covers of the trucks. 	National Ambient Air Quality Values.				
	The Water	Run-off from quarry operations	 Provision of siltation ponds Regular desilting 	 NCC already constructed siltation ponds in the cement plant and quarry areas NCC conducts regular maintenance of the siltation ponds 	Operational stage		Northern Cement Corporation	Environmental Monitoring Report
Effect of operations on local economy	The People	Increased employment opportunities	Priority in hiring of personnel shall be given to the directly affected residents.	ECC contractors hire most of their workers from Brgy. Labayug. Workers from Sison and Pangasinan are also hired.	Operational stage		Northern Cement Corporation	SDP
		Increased tax revenue	Proper registration, tax contribution, land registration and other laws/ordinances shall be followed	ECC pays proper taxes	Operational stage		Northern Cement Corporation	Tax collection certificate
Influx of delivery trucks in the area	The Air	GHG emissions from delivery trucks	Implement carbon sink programs such as tree planting to mitigate GHG emissions	ECC conducts reforestation activities and greening projects.	Operational stage	~P100,000	Northern Cement Corporation	SDP

Г.									
	ENVT'L ASPECT	ENVT'L COMPONENT LIKELY TO BE AFFECTED	POTENTIAL IMPACT	OPTIONS FOR PREVENTION OR MITIGATION OR ENHANCEMENT	VALIDATION ON THE EFFECTIVENESS OF MITIGATING MEASURE (EQPL AS REFERENCE)	SCHEDULE OF IMPLEMENTATION	ESTIMATED COST	RESPONSIBLE ENTITY	GUARANTEES
			Traffic congestion in Barangay Labayug	Ensure that delivery trucks are parked in the parking space provided by NCC	NCC has a motorpool in front of the cement plant where trucks are parked	Operational stage		Northern Cement Corporation	Municipal / Barangay Development Plan
				Follow traffic management implemented by LGU.	NCC coordinates with local barangay regarding implementation of traffic rules				
				Provide early warning devices/road signs					



3.5 Construction Environmental Program

- ⁴²¹ During the construction phase of the Project, the designated contractor for the Project shall implement and be responsible for its environmental program, under the supervision of Northern Cement Corporation. The designated contractor will be required to implement the EMP, in accordance to the ECC conditions.
- ⁴²² The implementation of the Construction Environmental Program will be part for the scope of work of its contractor in accordance with the conditions stipulated in the ECC and will be supervised by the NCC. It shall include specific actions and measures such as:
 - Provision of temporary lodging and sanitation amenities for workers, and liquid and solid waste handling/disposal facilities;
 - Avoidance of unnecessary earth-movement;
 - Worker and project site safety programs, including emergency response plans;
 - Proper storage and disposal of hazardous wastes (i.e., used oils, oil-contaminated material, BFL etc.);
 - Establishment of silt traps and erosion barriers around the project site;
 - Regular removal of silts and sediments or as necessary;
 - Worker and project site safety programs and emergency response plans;
 - Provision of portable sanitation facilities to the workers and ensure safe disposal of wastewater generated;
 - Proper segregation, storage, disposal of solid and hazardous wastes (i.e., used oils, etc.);
 - Reduction or elimination of pollution sources by using pollution control measures (i.e., watering of project site, installation of noise reduction equipment such as mufflers, scheduling of work during daytime, installation of septic tanks)
 - Elimination/Reduction of occupational safety and risks through strict implementation of safety plans and procedures (i.e., use of PPEs, provide health stations and first aid kits, regular monitoring of workstations if still meet work standards).
 - Proper demobilization procedures (i.e. clean-up of construction sites, replacement/replanting of removed trees).
- ⁴²³ Service contractors are strictly complying with all the requirements and mandates of the company related to implementation and continuous monitoring of hazardous waste management as part of their contract. Safekeeping of generated hazardous wastes are stored and secured in a specialized storage. Containment of hazardous wastes are labelled accordingly in compliance to R.A. 6969. Chemical and oil spill kits are available in the hazardous waste storage for emergency purposes. Generated hazardous wastes of service contractors are being disposed and treated by a DENR accredited waste treaters and transporters. Inventory and reporting are also being undertaken by service contractors thru the Environmental Management Bureau Regional Office.

Environmental Performance Report and Management Plan SECTION 3 ENVIRONMENTAL MANAGEMENT PLAN

3.6 Solid Waste Management

- ⁴²⁴ The solid waste management plan of the NCC includes guidelines for solid waste avoidance and volume reduction through source reduction and waste minimization measures including composting, recycling, reuse, recovery, and other measures before collection and disposal in appropriate and environmentally sustainable development principle. It also presents guidelines on proper segregation, collection, storage and disposal of solid waste by adopting practical and environmentally sound practices that addresses minimization, generation, transport, disposal, and monitoring.
- ⁴²⁵ The Pollution Control Officer (PCO) of the NCC cement plant ensures the compliance of the operation to RA 9003 or the Ecological Solid Waste Management Act by strictly implementing their solid waste management program. The following practices are observed as part of their solid waste management program:
 - Implementation of waste segregation (biodegradable and non-biodegradable) policy for all construction and operations personnel;
 - Provision of solid waste handling and storage facilities, such as dumpsters, trash cans in common areas and strategic locations in the facility;
 - The biodegradable wastes, such as discarded kitchen wastes and yard trimmings shall be composted;
 - Implement a paper usage reduction program in the administration office by re-using paper for other similar purposes;
 - The recyclable wastes, such as paper, plastics, and metals, shall be sorted accordingly and sold to waste service providers; and
 - The residual and other general solid wastes shall be disposed in their appropriate bins and in accordance with the local solid waste collection schedule.
- ⁴²⁶ Monitoring activities regarding waste management should include the monitoring of the weight of the generated solid waste and keeping an inventory for each kind of waste, regular audits of waste segregation and collection practices, tracking of waste generation trends by type and amount of waste generated by section, characterizing waste at the beginning of generation of a new waste stream and periodically documenting the characteristics and proper management of waste, and all related retained information regarding solid waste shall be kept by the PCO.

3.7 Hazardous Waste Management

- ⁴²⁷ The hazardous waste management of the NCC complies with the requirement of RA 6969 or the Toxic Substances and Nuclear Waste Control Act of 1990. It covers the generation, segregation, labeling, collection, storage, transport, treatment, and final disposal of the hazardous wastes.
- ⁴²⁸ Hazardous wastes generated during the cement and quarry operation include waste oils, power transformers, used lead acid batteries (ULABs), busted fluorescent lamp (BFL) and oilcontaminated materials such as used gloves and rags. Spent and expired laboratory chemicals, under classification specified in DAO 2013-22, are also generated. Clinical wastes are also included.
- ⁴²⁹ All hazardous wastes are stored on-site prior to transport and treatment. These wastes are properly segregated and stored in containers in accordance to DAO 2013-22. Incompatible materials are not be stored near each other while waiting for pick-up. The segregation shall be in accordance with chemical properties, hazardous waste type, and hazardous waste state. All hazardous waste containers are properly labelled in reference to the requirements of DAO 2013-22.

The PCO should ensure appropriateness of the labelling and segregation of hazardous waste at the Hazardous Waste Storage Area and accumulated hazardous waste shall be stored for not more than a year. Only DENR-registered hazardous waste transporter and TSD facility will be allowed to collect and treat the hazardous wastes. The transport, treatment, and final disposal is arranged by the PCO through the online hazardous waste manifest system.

⁴³¹ All personnel directly handling hazardous waste shall be trained/oriented on this procedure. Topics shall include: waste identification (types and characteristics), hazards and risks in handling hazardous wastes, labelling and placarding, proper storage, waste minimization, types of potential emergencies arising from wastes handling, storage and treatment disposal, Spill Management Plan, Personal Protective Equipment (PPE), laws and regulations concerning hazardous waste management, and monitoring requirements.

3.8 Scraps Management

- ⁴³² Scrap Management does not include defective or damaged material to be returned to supplier and those fully depreciated assets of the company but still have the operational benefit to the company. It includes assets that has been identified for disposal and for when management approval has been secured. Scrap materials as defined are materials that consists of recyclable materials left over, discarded but has monetary value.
- ⁴³³ Scrap is identified, in this procedure, as materials that are no longer useful and has no benefit to the normal operation of a department. They are leftover or fragments that are deemed invaluable after significant parts are already used for a specific purpose. In fabrication area, scrap material are metal plates that are too small in size where the use of the said material may compromise the quality of fabricated projects. Scrap during construction and modification works are leftover materials after the projects are completed. The Logistics Department is in-charged in the management of scrap materials of the company.
- ⁴³⁴ Designated areas for collected scarps are provided within the facility. Scarps are collected daily by the team in-charged and are brought in the designated areas for sorting and segregation according to its type, usage and size. The disposal of metal scrap is under the discretion of the management. The rest of the scrap can either be sold, donated, or recycled. Tender sales can be adopted for items such as worn out conveyor belts, wastepaper, and used wood.

3.9 Occupational Health and Safety

- ⁴³⁵ The Northern Cement Corporation implements its occupational health and safety policy to ensure the safety of its workers and to protect its valuable equipment and properties against damages. The company's safety and health policies are based on DAO 2000-98 or the Mine Safety and Health Standards. The following details are basic guidelines that is being implemented as part of the occupational health and safety policy of NCC:
 - Conduct of regular safety meetings on different departments and service contractors;
 - Conduct of pre-employment orientation on new employees including service contractors, OJT students, school tours and visitors informing them about the Company's safety measures, rules and regulations before entering or visiting the plant or engaging to work;
 - All management, technical, and non-technical personnel undergo various training courses and seminars to enhance and improve their capabilities and knowledge;
 - Regular updating of emergency response plan updated regularly, and emergency drills is performed regularly to improve personnel's response technique and time;

- Conduct of regular audits by the management and personnel, with possible assistance from various safety consultants;
- Annual health check-ups for all personnel;
- Provision of safety signage, adequate illumination, anti-skid steps and guard rails, fire extinguishers, first-aid kits, and other safety features throughout the Project's facilities; and
- Promoting cleanliness and orderliness and application of the 5S of good housekeeping in all working areas;
- Provision of personal protective equipment (PPE), which includes safety boots, hard hats, gloves, safety goggles (in some instances) for construction workers (during Constructions phase) and personnel (during Operations phase) working on the Project.

3.10 Handling and Blasting Procedure

436

The blasting activities of the quarry operation is being done by a third-party contractor of NCC. A proper handling and blasting procedure is being implemented by the third-party contractor with the supervision of NCC. The procedure is consistent to the rules and procedure for any NACl blasting operation. The detailed procedure is attached as **Annex 17**.

3.11 Air Emission Management

- ⁴³⁷ Air emissions come from the operation activities such as processing operations, and repair and maintenance of vehicles and equipment. In order to reduce the air emissions associated with the Project, **Northern Cement Corporation** employs the following measures:
 - Installation of bag filters and electrostatic precipitators to prevent introduction of suspended particles in the air;
 - Regular maintenance of standby generators to ensure efficient combustion of diesel fuel (includes emissions sampling);
 - Equipping the generator set with mufflers to lessen noise levels during operation;
 - Reminding of delivery trucks/visitors not to leave parked vehicles on long periods of idling; and;
 - Regular maintenance of equipment and vehicles.
- ⁴³⁸ Air emissions are expected during the construction phase as well. **NCC** will also employ air emissions management program to mitigate concerns on air emissions during construction of the expansion project.

3.12 Vehicular Traffic Management

- ⁴³⁹ Traffic impact along the road is expected due to the increase of vehicles coming from in and out of the proposed Project. To mitigate the said traffic, **Northern Cement Corporation** implements the following measures:
 - Coordination with the Sison LGU;
 - Provision of safety barriers, warning signs and lights, traffic marshals within the vicinity of project sites, and adequate parking spaces;
 - All deliveries of construction materials and heavy equipment, either inbound or outbound of the facility may be done during off-peak hours and at designated delivery hubs located near the Project area to prevent blockage of traffic flow along public roads; and
 - Assistance of security personnel in directing traffic of vehicles coming in and out of the facility.

3.13 Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA)

- ⁴⁴⁰ Climate change can affect the frequency of geohazards in the country. Higher temperatures will result in water shortages and droughts while increased rainfall may induce flooding and landslide. Considering these figures, appropriate precautionary climate change measures and adaptation strategies must be employed during the construction and operation phases of the project to avoid any complications in the long-run.
- ⁴⁴¹ The main objective of the DRR and CCA activities is to minimize or reduce the risk and impact of the hazards to the project and to the community. The project included climate change mitigating measures in the design and construction and during its operation. The project was designed to be resistant to natural disasters such as earthquake, typhoons and flooding. The following are the DRR and CCA mitigating measures that will be implemented by the project.
 - Green and open areas is part of the features of the project;
 - A stormwater drainage is constructed in the project site to avoid flooding during heavy rainfall;
 - Rainwater harvesting is practiced in the project;
 - Waste reduction and recycling will also be observed during the construction and operation of the project. All the wastes will be properly handled and disposed;
 - The proponent will also be implementing water and energy saving practices during its operation;
 - The proponent will also ensure that there will always be enough safe water supply and basic sanitation facilities provided even during the event of a disaster;
 - A medical clinic is provided in the project site to respond to emergency situations;
 - Conduct IEC activities to the community regarding disaster response preparedness and mitigating measures.
- ⁴⁴² DRR and CCA activities will also be included in the SDP and IEC plan to highlight that the success of the programs will be dependent on the community support and participation.

SECTION 4

ENVIRONMENTAL RISK ASSESSMENT & EMERGENCY RESPONSE POLICY AND GUIDELINES

4.1 Methodology

⁴⁴³ The general guidelines and outline for an Environmental Risk Assessment (ERA) preparation are prescribed in Annex 2-7e of DAO 2003-30. However, the guidelines focused more on the risks and hazards posed by activities and/or manufacturing methods that involve chemical storage, processing, and use. Although this is applicable for the proposed Project, this shall only form part of the overall ERA. Major environmental risks identified were the geological hazards posed on the proposed Project.

4.2 Risk Screening Level

⁴⁴⁴ A risk screening level exercise refers to specific facilities or the use of certain processes that has the potential to pose significant risks to people and its surrounding environment. The Plant is covered by the risk screening level exercise, as indicated in **Table** 4-1.

Table 4-1: Risk Screening Matrix				
ACTIVITIES REQUIRING RISK SCREENING EXERCISE*			ERA APPLICABILITY TO	
				THE PROJECT
1) Facilities for the production or processing of organic/inorganic			Not Applicable	
chemicals using:				
Alkylation	Esterification	Polymerization	Distillation	
Amination	Halogenation	Sulphonation	Extraction	
Carbonylation	Hydrogenation	Desulphurization	Solvation	
Condenstation	Hydrolysis	Nitration	Pesticides &	
Dehydrogenation	Oxidation	Phosphorus prod.	pharmaceutical prod.	
petroleum products3) Installations for total or partial disposal of solid or liquid substances by incineration or chemical decomposition			Not Applicable	
4) Installations for the production or processing of energy gases (e.g., LPG, LNG, SNG.)			Not Applicable	
5) Installations for th	ne dry distillation o	of coal or lignite		Not Applicable
6) Installations for the production of metals and non-metals by wet process or electrical energy			Not Applicable	
7) Installations for the loading and unloading of hazardous materials as defined by RA 6969 (or DAO 1992-29)			Applicable	
NOTE: *- Based on Annex 2-7e of DAO 2003-30 Revised Procedural Man			lal	

⁴⁴⁵ The study requires **Level 1 of the threshold inventory** since NCC stores approximately 29 tons of Ammonium Nitrate Fuel Oil per week; Level 1 threshold of explosives storage is 10 tons, while Level 2 threshold is 50 tons. Preparation of emergency/contingency plan is required.

4.3 Risk Identification and Analysis

4.3.1 Hazards from Ammonium Nitrate Fuel Oil (Hazardous Material)

⁴⁴⁶ Ammonium Nitrate Fuel Oil, or ANFO, poses the following hazards:

- Explosive; mass explosion hazard;
- Causes eye irritation;
- Suspected of causing cancer;
- Harmful to aquatic life with long lasting effects.
- ⁴⁴⁷ There are no identified health effects under normal use of ANFO. Proper handling and storage are being followed by NCC to avoid any adverse health effects. The transport, storage and handling procedure for ANFO by the third-party contractor of NCC is attached as **Annex 17**.
- ⁴⁴⁸ NCC follows a detailed blasting procedure to avoid misfires. The procedure includes proper pattern design, charging of shots, priming, loading of blast holes, fencing, personnel restrictions, tying in of shots, and firing procedures. NCC also implements safe practices during priming and charging of shots. Misfire procedures are already in place.

4.3.2 Natural Hazards

4.3.2.1 Seismicity

- ⁴⁴⁹ Intense or strong seismic activities may cause damage to the cement plant infrastructures. The construction and operational phase of the proposed project should then factor the potential for earthquake induced risks.
 - 4.3.2.2 Typhoons
- ⁴⁵⁰ The mean annual number of typhoons that pass through the Philippine Area of Responsibility (PAR) is about 20, of which around 9.2 cross the country. If a typhoon directly hits the plant facilities, it could possibly bring extensive wind and rain hazards (i.e. strong wave currents and flooding). Regular weather monitoring should be done so that cement plant safety protocols can be done.

4.3.2.3 Flooding

⁴⁵¹ The proposed project area is not prone to flooding. However, heavy rains may occur in times of extreme precipitation volume and intensity. During heavy rains, flooding may occur which may affect the cement plant operations. Emergency responses must be considered for possible occurrences.

4.3.3 Man-Made Hazards

4.3.3.1 Occupational Accidents

⁴⁵² The project involves a variety of equipment and facilities which may possibly injure personnel and/or damage property if handled/operated improperly. These risks can be greatly reduced with scheduled maintenance checks. Also, personnel handling such equipment and operating the facilities will be properly trained and supervised and re-trained periodically.

4.3.3.2 Accidental Spills (e.g. fuel, engine lubrication oil, coolant)

⁴⁵³ Oil spillage that may come from engine maintenance or storage failure may be caused by several reasons such as faulty operational procedures, pipe deterioration, sabotage, and force majeure. It may result to anaerobic conditions since large spills may form a film on water surfaces impairing oxygen transfer. This scenario may be harmful to aquatic organisms. The fuel may be decomposed by micro-organisms, but degradation is selective and can result in sediment becoming enriched with aromatic hydrocarbons. Proper oil spill protocols should then be observed should this happen.

4.3.4 Air Pollutants Hazards

⁴⁵⁴ Considering the nature of the project, exposure to pollutants associated with cement plant may lead to potential health effects and other hazards. Regular maintenance of equipment and other air mitigating measures should be strictly done to avoid these risks. Potential air pollutants associated with cement plant are particulate (TSP and PM₁₀) and gaseous (CO, NO_x, SO_x) emissions.

4.3.4.1 Particulate Matter

- Particle matter (PM) is the term for a mixture of solid particles and liquid droplets found in the air. Airborne particulate matter varies in size and may be in different chemical constituents. Airborne particles can range in size from a few nanometers (nm) to around 100 micrometers (μm) in diameter. PM₁₀ is the concentration of particles that are less than or equal to 10 μm in diameter; similarly, PM_{2.5} describes the concentration of particles that are less than or equal to 2.5 μm in diameter.
- ⁴⁵⁶ Particulate matter comes from a variety of sources and contains primary components, which are emitted directly into the atmosphere, and secondary components, which are formed within the atmosphere because of chemical reactions. Primary sources include combustion sources (road vehicles and power stations), mechanical processes (e.g. quarrying and agricultural harvesting), and natural processes (e.g. entrainment of soil by the wind and generation of marine aerosol particles). Secondary particles form in the atmosphere because of chemical reactions that lead to the formation of substances of low volatility, which consequently condense into the solid or liquid phase, thereby becoming particles. The formation of secondary particulate matter takes hours or days and the air containing the pollution can travel long distances.
- ⁴⁵⁷ The "coarse particles" (such as those found near roadways and dusty industries) with diameters between 2.5 and 10 micrometers and "fine particles" (such as those found in smoke and haze) that are 2.5 micrometers in diameter or less are of concern due to their effect on human health. Both short and long-term exposure to these can cause increased respiratory symptoms (e.g., irritation of the airways, coughing, or difficulty breathing); decreased lung function; aggravated asthma; development of chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease.
- ⁴⁵⁸ The most serious health problems occur among susceptible groups with pre-existing lung or heart disease and the elderly and children. However, even healthy individuals may experience temporary symptoms from exposure to elevated levels of particle pollution.

4.4 Identification of Potential Emergencies

- ⁴⁵⁹ Emergencies are unforeseen events or episodes that are caused by natural forces and circumstances that may result to negative effects to people, property, and the surrounding environment. As a preliminary step in developing an effective emergency response policy, it is important to identify the potential emergency scenarios that would most likely occur. **Table** 4-2 lists the most probable emergencies that could happen in future operation of the Project.
- ⁴⁶⁰ Emergency situations may also require different levels of classification and response procedures, depending on the degree of situations. These levels will be referred to as: 1) Incident; 2) Emergency; and 3) Crisis.
- ⁴⁶¹ Incident situations present minor events that may require partial or total mobilization of the proposed Project's resources to effectively deal with an accident. An episode may present very minimal injuries and/or partial damages to property.
- ⁴⁶² Emergency situations require the utilization of all resources, with the assistance of local emergency responders, and additional resources from Northern Cement Corporation's main

REPSONSE POLICY GUIDELINES

office. This episode may present serious injuries and some fatalities and could result to severe or total damage to the property.

⁴⁶³ Crisis situations are the worst conditions, which require the utilization of full resources, and possibly, assistance from the national government to address the event. An episode may present multiple fatalities, destruction of facilities, and severe/total damage to the surrounding community.

Table 4-2: Emergency Scenarios for the Project		
TYPE OF EMERGENCY SITUATION	POSSIBLE CAUSES	POTENTIAL EFFECTS
Construction Phase		
Fire	 Electrical short-circuits, overloading of equipment Accidental ignition of combustible materials 	 Partial or total loss of equipment and property Injuries and fatalities to personnel
Earthquakes	 Movement/rupture of nearby fault lines Volcanic eruption 	 Failure of concrete structures (i.e. collapse, dam breach, etc.) Injuries and fatalities to personnel and downstream communities
Release of toxic substances	Equipment malfunctionAccidental spillageMan-made errors	 Health hazards to the employees, workers and nearby communities Degradation of affected parameter (i.e. contamination of soil and water)
Occupational safety accidents	 Improper training and supervision of personnel Equipment and facility failure Lack of full understanding regarding the surrounding environment 	 Injuries and fatalities to personnel Partial and total loss of equipment
Flooding	Heavy rainfallClogged drainage	Damage to propertyStop operation
Operation Phase		
Fire	 Blasting procedure malpractice Electrical short-circuits, overloading of equipment Accidental ignition of combustible materials 	 Partial or total loss of equipment and property Injuries and fatalities to personnel
Explosion	Blasting procedure malpracticePower outrageEquipment malfunction	 Partial or total loss of equipment and property Injuries and fatalities to personnel
Earthquakes	 Movement/rupture of nearby fault lines Volcanic eruption 	 Failure of concrete structures (i.e. collapse, dam breach, etc.) Injuries and fatalities to personnel and downstream communities
Release of toxic substances	Equipment malfunctionAccidental spillageMan-made errors	 Health hazards to the employees, workers and nearby communities Degradation of affected parameter (i.e. contamination of soil and water)
Occupational safety accidents	Improper training and supervision of personnelEquipment and facility failure	Injuries and fatalities to personnelPartial and total loss of equipment

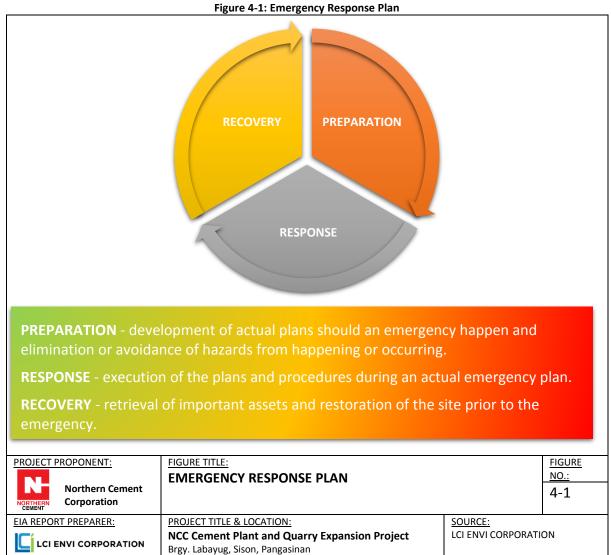
NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

Environmental Performance Report and Management Plan SECTION 4 ENVIRONMENTAL RISK ASSESSMENT & EMERGENCY

RISK ASSESSMENT & EMERGENCY REPSONSE POLICY GUIDELINES

TYPE OF EMERGENCY SITUATION	POSSIBLE CAUSES	POTENTIAL EFFECTS
	• Lack of full understanding regarding the surrounding environment	
Flooding	Heavy rainfallClogged drainage	Damage to propertyStop operation
Landslide	Heavy rainfallMan-made errors	 Damage to property Injuries and fatalities to personnel and downstream communities Stop operation


4.5 Emergency Plan

- ⁴⁶⁴ The Emergency Plan is a management structure that is intended as a guide for the personnel during emergency situations. This structure may or may not be similar to the existing organizational/management hierarchy of the Project, although comparison on roles and responsibilities can be used as reference. The general emergency preparedness and response procedure of NCC is attached as **Annex 16**.
- ⁴⁶⁵ The implementation of the Emergency Plan is a standard practice that is currently being integrated as part of company policies. Its objective is to establish an orderly and systematic approach in addressing an emergency, and in turn, decrease further injuries/fatalities and loss of property.
- ⁴⁶⁶ Forming the Emergency Plan requires the Proponent to select among the different skills and knowledge of its personnel at the Project. The selection process will involve background checks, training and skills learning, and voluntary application of selected personnel. The proposed project will follow the schematic diagram and procedures presented in

- **Figure** 4-1 and **Table** 4-3. The roles and responsibilities of each personnel involved in the Emergency Plan are listed in **Table** 4-4.
- ⁴⁶⁸ The designation of the personnel and their corresponding responsibilities may be changed during different types of emergency scenarios that were previously identified in this section. Therefore, if such case will exist, NCC will train and designate personnel appropriately to deal with each type of emergency.

Brgy. Labayug, Sison, Pangasinan N	ENVIRONM	IENTAL RISK ASSESSMENT & EMERGENCY REPSONSE POLICY GUIDELINES
Table 4-3: Em	ergency Response Procedures for Differ	
PREPARATION	RESPONSE	RECOVERY
A. Fire or Explosion		
 Orientation and training of personnel on fire safety Conduct of regular fire drills Installation and regular testing of firefighting devices (i.e. fire hoses, fire extinguishers, smoke detectors, sprinkler system) Regular inspection of electrical equipment and lines for any defect or malfunction, and replacement, as necessary Securing of all flammable items in proper containers and storage facilities Strict implementation of "No Smoking" policy in plant facilities Placement of emergency numbers and communication equipment in conspicuous areas for easier notification Designation of emergency exits (free from obstruction) and evacuation procedures Regular maintenance of plant equipment 	 Notice for personnel to keep calm and alert to prevent further injuries; to follow emergency evacuation procedures; and to report immediately any presence of smoke, spark, or open flame to authorized personnel Immediate use of fire extinguishers, only if the fire can still be contained Disconnection of electrical or fuel connections and shutdown of all affected equipment Removal of all flammable materials from the fire scene to avoid further contact, if possible Wearing of proper fire protection attire (i.e. fire suit, boots, breathing apparatus) by responders Prohibition of using or pouring of water over fuel or alcohol fires, and electrical fires 	 Prohibition of returning to the fire scene, as long as necessary, unless declared for safe entry Checking for personnel that may be trapped, injured, or needs further assistance Reporting of any important incident that require immediate attention Securing of important items and equipment from unauthorized access from outsiders, after the building is declared safe for re-entry If fire damage is minimal, or if facility is recoverable, implementation of necessary corrective measures to prevent the accident from reoccurring
B. Earthquakes		
 Conduct of necessary preparations, including equipment and facility checks, to prevent injuries in an event of an earthquake Securing of all loose items to prevent falling Placement of heavy materials near the ground Storage of flammable items in designated safe areas Orientation of personnel on safe locations, emergency response equipment, and evacuation routes 	 Notice for personnel to keep calm and alert to prevent further injuries; to protect themselves by getting under sturdy structures and stay away from sharp, flammable, or heavy items; and to prepare for immediate evacuation of the facility, if necessary Shutdown of all gas and electric equipment 	 If there are no threats of aftershocks, checking for personnel that may be trapped, injured, or needs further assistance Prohibition of returning to the facility if it is deemed structurally unstable, or declared unsafe Thorough inspection of the facility premises for any unusual crack/gap in the ground or walls Checking for possible fires and advise authorities for appropriate response Securing of important items and equipment from unauthorized access from outsiders, after the building is declared safe for re-entry

ENVIRONMENTAL RISK ASSESSMENT & EMERGENCY

REPSONSE POLICY GUIDELINES

		REPSONSE POLICY GUIDELINES
PREPARATION	RESPONSE	RECOVERY
		 Inspection of the facility for any major structural defect, crack, unstable item, and other potential hazards If earthquake damage is minimal or facility is recoverable, implementation of corrective measures to prevent the further hazards
		from affecting personnel and property
C. Release of Toxic Substances (e.g.	fuel)	
 Regular visual inspection for potential leaks and corrosion Inspection of facilities, containers, and equipment for any sign of leaks or spills 	 Notice for personnel to report the occurrence immediately to supervisor; to follow strictly instructions of supervisor in charge of cleaning operations Ceasing of operations in the area affected by spillage and stop appropriate source Stop vehicles' engines in the affected area Ceasing of operations or any movement until clearance is given 	 Immediate clean-up of all spills using proper conditions, including stoppage and containment of spill or leak Implementation of measures to prevent re-occurrence of the incident
D. Occupational Hazards		· · · · · · · · · · · · · · · · · · ·
 Provision of basic PPEs. Formation of an emergency response team for each department Provision of first-aid kits and emergency equipment on critical workstations Training of personnel on proper equipment handling and other safety practices Posting of safety reminders on workstations Provision of safety features, such as adequate lighting, guide rails, and safety signage 	 Immediate reporting of any accident, especially those considered life-threatening Immediate application of first-aid Removal of affected personnel from the accident site Bringing of affected personnel to the nearest first aid station or hospital if necessary 	 Performing of corrective measures on equipment and procedures Provision of additional safety procedures, equipment, and training
E. Flooding		
 Securing of all loose items (i.e. lamp post, roofs, loose planks, and other light materials) by adding extra guy wires or reinforcing materials Removal of obstructions to the drainage system In case of storm warning from PAGASA, monitoring of important weather forecast/ 	 Notice for personnel to avoid staying outdoors; to stay away from items that may be blown away by strong winds and from electrical mains Continuous monitoring of the weather conditions Shutdown of all gas and electric equipment 	 Inspection of facility for any major structural defect, crack, unstable item, and other potential hazards Repair of broken power lines, fuel lines, and other utilities, if necessary Securing of important items and equipment from unauthorized access from

ENVIRONMENTAL RISK ASSESSMENT & EMERGENCY REPSONSE POLICY GUIDELINES

intensity of the stormdeclared safe for re-entry F. Landslide ••Formation of an emergency response team for each department••Training of personnel on proper equipment handling and other safety practices••Orientation of personnel on safe locations, emergency response equipment, and••Orientation of personnel on safe locations, emergency response equipment, and••Notice for personnel to keep calm and alert to prevent further injuries; and to prepare for immediate••Securing of important items and equipment from			REPSONSE POLICY GUIDELINES
intensity of the stormdeclared safe for re-entry F. Landslide ••Formation of an emergency response team for each department••Training of personnel on proper equipment handling and other safety practices••Orientation of personnel on safe locations, emergency response equipment, and••Notice for personnel to keep calm and alert to prevent prepare for immediate••Securing of important items and equipment from	PREPARATION	RESPONSE	RECOVERY
 Formation of an emergency response team for each department Training of personnel on proper equipment handling and other safety practices Orientation of personnel on safe locations, emergency response equipment, and Notice for personnel to avoid staying outdoors; to stay away from items that may have been affected by the event Notice for personnel to keep calm and alert to prevent further injuries; and to prepare for immediate Securing of important items and equipment from 			outsiders, after the building is declared safe for re-entry
 response team for each department Training of personnel on proper equipment handling and other safety practices Orientation of personnel on safe locations, emergency response equipment, and Staying outdoors; to stay away from items that may have been affected by the event Notice for personnel to keep calm and alert to prevent further injuries; and to prepare for immediate May from items that may have been affected by the event Notice for personnel to keep calm and alert to prevent further injuries; and to prepare for immediate 	F. Landslide		
 Shutdown of all gas and declared safe for re-entry electric equipment Bringing of affected incident. Conduct 	 Formation of an emergency response team for each department Training of personnel on proper equipment handling and other safety practices Orientation of personnel on safe locations, emergency response equipment, and 	 staying outdoors; to stay away from items that may have been affected by the event Notice for personnel to keep calm and alert to prevent further injuries; and to prepare for immediate evacuation of the facility, if necessary Shutdown of all gas and electric equipment Bringing of affected personnel to the nearest first 	 major structural defect, crack, unstable item, and other potential hazards Repair of broken power lines, fuel lines, and other utilities, if necessary Securing of important items and equipment from unauthorized access from outsiders, after the site is declared safe for re-entry Assess damage from the incident. Conduct geotechnical investigation if

Table 4-4: Roles and Responsibilities in the Emergency Working Teams

	nd Responsibilities in the Emergency working reams
EMERGENCY PREPAREDNESS AND RESPONSE TEAM	ROLES AND RESPONSIBILITIES
EPR Chairman	 Responsible for the overall organization and strategy of emergency response, coordinates logistics efforts and has authority for final decision in any emergency action.
EPR Coordinating Committee	Provides direction to all personnel and continue direct operation until replaced by higher authority
Security and Crowd Control Team	 Ensure crow and traffic control Secure perimeter Assist evacuation team during evacuation
Fire Brigade Team	 Responding immediately and safety to emergency calls and requests for assistance Attending emergency incidents involving fire in the plant
Medical/First Aid Team	Responding immediately on accident and providing first aid as needed
Evacuation Rescue Team	 Responding immediately and safety to emergency calls and request for assistance in providing rescue on individual or personnel in case of accident, natural disasters and trapped on fire, confined spaces, damaged structures and evacuation cave- ins.
Salvage Team	 Responding immediately and safely to emergency calls and request for assistance in providing rescue or salvage on impacted assets in case of fire, collapsing building or structure, or natural disasters like earthquakes and typhoons.
Chemical and Oil Spill Team	Provide assistance in response to chemical and oil spills.

4.6 Safety and Health Program

⁴⁶⁹ **Northern Cement Corporation** gives priority on the safety of its employees and their working environment. It developed this program for accident and injury prevention through the implementation of plant rules and guidelines that shall involve management, supervisors, and employees in identifying and eliminating hazards that may develop during work process.

4.6.1 Leadership and Administration

⁴⁷⁰ The management will spearhead in the formation of a safety committee, develop a system for identifying/correcting hazards, prepare for foreseeable emergencies, provide appropriate trainings, and establish a disciplinary policy to ensure strict compliance.

4.6.1.1 Company Safety Policy

- ⁴⁷¹ It is basic policy that no task is so important that an employee must take a risk of injury/illness or violate a safety rule. Active involvement in safety practices is then encouraged to make the area a safe place to work.
- ⁴⁷² It is the daily duty of every employee to be cautious of unsafe conditions. In addition to this, supervisors or accountable managers are responsible in overseeing the actions of employees and to take prompt action in eliminating unsafe practices and hazards in the workplace.

4.6.2 Accident/Incident Investigation Reporting

- ⁴⁷³ It is very advantageous for every employee to be prepared for any emergency to prevent further injury, property damage, and loss of limb or even life. An emergency preparedness plan must then be prepared and strictly implemented.
- ⁴⁷⁴ Prevention of accidents by eliminating potential threats/hazards and anticipating other probable causes is an effective way of creating a safe and healthy environment.

Emergency Response Program

⁴⁷⁵ The emergency response program shall be implemented by an emergency response team composed of equipped and trained personnel who will be tasked to handle and manage the program, assist other employees to safety, and to prevent any damage or injury. Proper training and orientation of concerned team members will be accorded to prepare them in responding appropriately in any emergency they may encounter. The emergency preparedness and response program of NCC is attached as **Annex 16**.

Personal Protective Equipment

- ⁴⁷⁶ The personal protective equipment (PPE) is a set of safety gear worn by personnel that is designed to provide sufficient safeguard against occupational-related illnesses and to prevent lifethreatening injuries.
- ⁴⁷⁷ PPE, such as safety hats, safety shoes, gloves, dust mask, and ear plugs, will be provided as necessary. This is to ensure safe and protected personnel working in safe working environment. NCC will make the usage of PPE a mandatory policy for personnel working inside the Project premises. Guests and visitors will also be required to wear PPE as necessary.

4.6.2.1 Incident Response Procedure

⁴⁷⁸ Any accident, injury, or work-related illness should be reported and investigated on immediately so as to determine the appropriate action to be conducted.

Recording and Review

⁴⁷⁹ It is mandatory that employees are to report any injury or work-related illness to their immediate supervisor regardless of how serious. Minor injuries, such as cuts and scrapes, can be entered on the first-aid only log. More serious injuries are to be reported and recorded properly for future review.

Incident Investigation

- ⁴⁸⁰ It is imperative that an incident scene should not be disturbed except to aid in rescue or make the scene from further incidence. In case of an incident resulting in death or serious injuries, a preliminary investigation will be conducted by the immediate supervisor of the injured person(s), a person designated by management, an employee representative of the safety committee, and any other person whose expertise would help the investigation.
- ⁴⁸¹ The investigating team will obtain written statements from witness, photograph the incident scene and machines/equipment involved. The said team will also document, as soon as possible after the incident, the condition of equipment and anything that may be relevant in the work area. A written "Incident Investigation Report" is necessary. The report should include a sequence of events leading up to the incident, conclusions derived from the incident and any recommendation to prevent a similar incident in the future.

Damage Control

- ⁴⁸² Damage cost because of accident, in reality, is unquantifiable, especially when damage to life and limb is involved. Cost of properties, structure, and equipment including its effect on existing productivity is quantifiable.
- ⁴⁸³ Any employee may be subject to on-the-spot termination when a safety violation places the employee or co-workers at risk of permanent disability or death.

SECTION 5

SOCIAL DEVELOPMENT PLAN/FRAMEWORK AND IEC FRAMEWORK

- ⁴⁸⁴ The following project stakeholders have been identified based on the stakeholder groups indicated in Section 5 of DENR Administrative Order No. 2017-15:
 - LGUs in areas where all project facilities are proposed to be constructed/situated and where all operations are proposed to be undertaken (a)
 - Municipal LGU of Sison, Pangasinan (host municipality)
 - Municipal LGU of Pozorrubio, Pangasinan (adjacent municipality)
 - Brgy. Calunetan, Sison (SDMP barangay)
 - Brgy. Inmalog, Sison (SDMP barangay)
 - Brgy. Labayug, Sison (host barangay)
 - Brgy. Paldit, Sison (SDMP barangay)
 - Brgy. Sugcong, Pozorrubio (SDMP barangay)

• Government agencies with related mandate on the type of project and its impacts (b)

- DENR Region I (Ilocos Region)
- DENR EMB Region I (Ilocos Region)
- DENR MGB Region I (Ilocos Region)
- DOH Region I (Ilocos Region)
- Provincial Environment and Natural Resources Office (PENRO Pangasinan)
- Community Environment and Natural Resources Office (CENRO Dagupan City)
- Interest groups, preferably those with mission/s specifically related to the type and impacts of the proposed undertaking (c)
 - Sison Senior Citizens Association
 - Women Sector
 - Youth Sector
- Local institutions (f)
 - Labayug Elementary & High School
- ⁴⁸⁵ No "households, business activities, industries that will be displaced" (d) and "people whose socioeconomic welfare and cultural heritage are projected to be affected by the project especially vulnerable sectors and indigenous populations" (e) have been identified for the project.
- ⁴⁸⁶ Other stakeholders for the proposed project include the local peace-and-order groups (i.e., PNP, Brgy. Police) and concerned non-government organizations (NGOs).

5.1 Social Development Program (SDP)

- ⁴⁸⁷ An indicative community-based Social Development Plan (SDP) for the expansion project, as presented in **Table 5-1**, will be developed by Northern Cement Corporation through a series of consultation with various stakeholder representatives in the project impact area.
- ⁴⁸⁸ The objectives of the SDP include the following:
 - Identify the basic needs and welfare of the host community as basis for the framework of social development program of the Project;

- Prepare an indicative sustainable plan based on the Barangay Development Plans and the mandated support of **Northern Cement Corporation**; and
- Establish a working relation with **Northern Cement Corporation** and the various community stakeholders with the goal of improving the quality of life of the project-affected communities by instilling self-reliance.

⁴⁸⁹ The community-based consultation and survey during the development of the SDP also provides an opportunity for identifying the following:

- Addressing key issues and concerns by the various stakeholders;
- Identifying and designing the recommend measures in response to the issues and concerns that were raised;
- Identifying the lead agency or organization responsible in implementing the measures; and
- Setting of timelines in implementing these measures consistent with the plans and programs of the lead agencies.

Table 5-1: Matrix of Social Development Plan

		Table 5-1. Watny of Social Deve				
CONCERN	PROGRAM/PROJECT/ACTIVITY	RESPONSIBLE COMMUNITY MEMBER/ BENEFICIARY	GOVERNMENT AGENCY/NON- GOVERNMENT AGENCY AND SERVICES	PROPONENT	INDICATIVE TIMELINE	SOURCE OF FUND
Livelihood and Employment	On-the-Job Training (OJT) Program	Brgy. Kagawad for Education Bonafide students of academic institutions in Labayug and SDMP Barangays	CHEd Region I Sison LGU Pozorrubio LGU Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Pre- Construction Operation	Northern Cement Corporation
	Handicraft skills training (cross- stitch, rug making, beauty care and hair dressing, cooking, etc.) Food processing training Skills training (welding, machinery and auto machanics, etc.)	Brgy. Kagawad for Education Unemployed members of the host community Women Farmer organization/cooperative	TESDA Region I Sison LGU Pozorrubio LGU Brgy. Labayug LGU SDMP Barangays MAO	Northern Cement Corporation	Operation	Northern Cement Corporation
	and auto-mechanics, etc.) Provision of relevant tools and trainings for farmers	Out-of-school youth				
Infrastructure	Support in the development of water supply system for Brgy. Labayug and SDMP barangays	Brgy. Kagawad for Infrastructure Host Community SDMP Barangays	Sison LGU Pozorrubio LGU Brgy. Labayug LGU SDMP Barangays MEO	Northern Cement Corporation	Operation	Northern Cement Corporation
Health and Nutrition	Provision of various medicines/medical and dental services	Brgy. Kagawad for Health and Education Host Community SDMP Barangays	DOH Region I MHO Sison LGU Pozorrubio LGU Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Construction Operation	Northern Cement Corporation

CONCERN	PROGRAM/PROJECT/ACTIVITY	RESPONSIBLE COMMUNITY MEMBER/ BENEFICIARY	GOVERNMENT AGENCY/NON- GOVERNMENT AGENCY AND SERVICES	PROPONENT	INDICATIVE TIMELINE	SOURCE OF FUND
Education	Provision of scholarships and financial assistance to students (both formal and informal education)	Qualified students of the host barangay	CHEd Region I DepEd Region I TESDA Region I Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Construction Operation	Northern Cement Corporation
Peace and Order	Financial support on closed circuit television (CCTV) installation in strategic areas in Brgy. Sugcong	Brgy. Kagawad for Peace and Order Brgy. Sugcong	Brgy. Sugcong LGU	Northern Cement Corporation	Operation	Northern Cement Corporation
Environment	Climate Change Adaptation and Disaster Risk Reduction Management training	Host community and SDMP Barangays	MDRRC Sison LGU Pozorrubio LGU Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Operation	Northern Cement Corporation
Safety	Provision of traffic signage and early warning device in strategic areas in Brgy. Labayug and Brgy. Sugcong	Host community and nearby barangays	Sison LGU Brgy. Labayug LGU Brgy. Sugcong LGU	Northern Cement Corporation	Construction Operation	Northern Cement Corporation
Cultural Heritage	Financial support to sports, recreation, town fiesta, and cultural activities	Residents of Sison Residents of Pozorrubio Host community and nearby barangays	Sison LGU Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Operation	Northern Cement Corporation
Spiritual	Financial support to religious institutions maintenance and construction works e Revised Procedural Manual for DAO 2003	Religious sector Ecumenical (pastors, priests, ministers, etc.)	Brgy. Labayug LGU SDMP Barangays	Northern Cement Corporation	Operation	Northern Cement Corporation

5.2 Social Development and Management Program (SDMP)

- ⁴⁹⁰ In accordance to DAO 2010-21, **Northern Cement Corporation** will allot a minimum of one point five percent (1.5%) of the direct mining costs annually, that will be divided into 3 different components; of which seventy-five percent (75%) shall be appropriated to implement the SDMP, fifteen-percent (15%) shall be allocated for IEC campaign implementation, and ten-percent (10%) for the development of mining technology and geosciences, as well as the corresponding manpower training and development.
- ⁴⁹¹ Northern Cement Corporation, through its Community Relations Office (COMREL), has just recently completed its 3rd SDMP cycle covering the years 2013 to 2017 which had a planned and committed amount of Php 21,814,791.90. However, based on the annual SDMP (ASDMP) budget for the same period, the spending was only Php 16,110,180.97 or Php 5,704,610.93 lower than what was declared in the 5-year SDMP.
- ⁴⁹² According to the DENR Administrative Order No. 2010-21, with subject: "Providing for a consolidated Department Environment and Natural Resources Administrative Order for the Implementing Rules and Regulation of Republic Act No. 7942, otherwise known as the "PHILIPPINE MINING ACT OF 1995" under Section 134: Development of Mining Community, Mining Technology and Geosciences and Institutionalization of Public Awareness and Education on Mining and Geosciences: Any unspent amount and/or savings, for any given year, allotted for the implementation of the various programs shall be added to the succeeding year's allotment and may be re-programmed after consultations with host and neighboring communities.
- ⁴⁹³ At present, Northern Cement Corporation has been implementing its 4th SDMP cycle covering the years 2018 to 2022. The total budgeted amount for the 4th SDMP cycle is **Php 20,324,710.00**.
- ⁴⁹⁴ The SDMP allocation per barangay is presented in **Table** 5-2 while the rational distribution of the SDMP fund is presented in **Table** 5-3. The comparison between the budgeted (mother SDMP) and the actual spending (ASDMP) is presented in **Table 5-4**.

Table 5-2. Allocati	lon per barangay (2013-2017)
SDMP BARANGAY	SDMP % ALLOCATION
Labayug	27%
Inmalog	22%
Sitio Saguitlang	18%
Sugcong	18%
Calunetan	10%
Paldit	5%

Table 5-2: Allocation per Barangay (2013-2017)

Table 5-3: Rationalization of SDMP				
SDMP	AREA	SDMP % ALLOCATION		
COMPONENT				
Social	Infrastructure and utilities	35%		
Development	Education	13%		
and	Health	10%		
Management	Livelihood	17%		
Program (75%)				
Information,	Institutionalization of public	15%		
Education and	awareness and education			
Communication	on mining and geosciences.			
(15%)				

SDMP	AREA	SDMP % ALLOCATION
COMPONENT		
Development	For development of mining	10%
of Mining	technology and	
Technology and	geosciences.	
Geosciences		
(10%)		

Environmental Performance Report and Management Plan SECTION 5

SOCIAL DEVELOPMENT PLAN/FRAMEWORK AND IEC FRAMEWORK

Table 5-5-4: SDMP and ASDMP of NCC (2013-2017)

SDMP CO	MPONENT	SDMP BUDGET	ASDMP	DIFFERENCE					
		(MOTHER SDMP)	2013	2014	2015	2016	2017	TOTAL	(PROJECTED- ACTUAL)
SDMP (75%)	Infrastructure and Utilities	7,633,956.05	1,526,088.43	820,933.62	871,901.17	943,247.38	1,476,392.77	5,638,563.37	1,995,392.68
	Education	2,842,456.00	566,832.85	304,918.20	323,849.00	350,349.02	548,374.45	2,094,323.52	748,132.48
	Health	2,181,160.05	436,025.27	234,552.46	249,114.62	269,499.23	421,826.51	1,611,018.09	570,141.96
	Livelihood	3,706,904.05	741,242.96	398,739.18	423,494.85	458,148.73	717,105.05	2,738,730.77	968,173.28
	Sub-total	16,364,476.15	3,270,189.51	1,759,143.46	1,868,359.64	2,021,244.36	3,163,698.78	12,082,635.75	4,281,840.40
IEC (15%)	Sub-total	3,270,189.45	654,037.89	351,828.69	373,671.93	404,248.87	632 <i>,</i> 739.75	2,416,527.13	853,662.32
DMMT (10%)	Sub-total	2,180,126.30	436,025.26	234,552.46	249,114.62	269,499.25	421 <i>,</i> 826.50	1,611,018.09	569,108.21
	GRAND TOTAL	21,814,791.90	4,360,252.66	2,345,524.61	2,491,146.19	2,694,992.48	4,218,265.03	16,110,180.97	5,704,610.93

5.2.1 SDMP Implementation Highlights for 2013 to 2017

- ⁴⁹⁵ It is a policy of Northern Cement Corporation that its host and neighboring communities, Barangay Labayug, Inmalog, Calunetan, Sugcong, Paldit and Sitio Saguitlang shall develop together with the progress and development of the company.
- ⁴⁹⁶ Below are the highlights of the implemented projects from 2013 to 2017:

A. Infrastructure and Utilities

Multi-Purpose Vehicle

 Provided to the SDMP barangays to improve availability of service transportation and quick response specially during emergency cases.

Irrigation for Farmers

- Provided to the SDMP barangays to improve their agricultural production capacity.
- B. Education
- Support for various construction, rehabilitation and improvement of schools to improve the educational environment and promote safe & conducive learning centers.
- Various scholarship programs for deserving residents of the SDMP barangays.

C. <u>Health</u>

- Medical supplies and equipment for the Brgy. Health centers.
- Medicines and vitamins for young and old ages particularly in the SDMP barangays.

D. Livelihood Activities

- Sewing machines distributed to selected individuals.
- Sustainable livelihood programs for 4Ps.
- Flexible hose was also provided to improve water systems and irrigation (domestic and agriculture use)

5.3 Information and Education Campaign (IEC)

⁴⁹⁷ The Information, Education, and Communication (IEC) campaign for the proposed project will be conducted in all phases of its development, which also allows for a regular feedback/grievance mechanism of issues and concerns. The

contents of the IEC are based on the action or operation plans of **Northern Cement Corporation** and will be monitored by a multipartite group for evaluation.

- ⁴⁹⁸ A feedback/grievance mechanism is a very important tool to educate people regarding the project's development and to check whether the project has negative or positive effects or perception. It will strengthen the knowledge of the people with regards to the positive impacts of the project, as well as the effort of the monitoring team together with the Proponent in resolving unfavorable events, if any.
- ⁴⁹⁹ Integral to the IEC is the regular reporting of **Northern Cement Corporation** on the progress of the proposed Project's operations. In general, the Proponent shall update the host LGUs if the agreements are followed or if there are minor or major changes to be made, and if there are problems that might occur and advice the LGU on appropriate preparations that are necessary to avoid or mitigate negative results. The Proponent will conduct IEC activities to establish transparency and to develop a partnership with the host communities.
- ⁵⁰⁰ IEC activities envisioned for the Project are numerous interactions between the Proponent, the host communities, and the local government officials on various topics involving the cement plant operations and the general welfare of the community through **Northern Cement Corporation's** initiatives and programs.
- ⁵⁰¹ **Table 5-5** presents the IEC campaigns conducted by **Northern Cement** Corporation for the year 2017 to 2019.
- ⁵⁰² **Table 5-6** presents the indicative IEC plan, which can be further improved after the series of consultations and future developments of the Project. Throughout the different phases of the proposed project, the Proponent will continue to inform the stakeholders about the status of the social development plan (SDP) to prevent any speculations, anxiety, and miscommunication.

IEC CAMPAIGN	DATE	VENUE	STAKEHOLDERS
Public participation meeting for NCC operations (MMT Presentation)	2017	 Brgy. Paldit, Sison 	 Brgy. Paldit community members
Public participation meeting for NCC operations (MMT Presentation)	28 July 2017	 Sitio Saguitlang, Brgy. Labayug, Sison 	 Sitio Saguitlang community members
Meeting for I-MINE Organization (Region I)	13 December 2017	 NCC Plant Office, Sison 	 Officers & members of I-MINE organization
Public participation meeting for NCC operations (MMT Presentation)	26 June 2018	 Brgy. Bobonan, Pozzorubio 	 Brgys. Nama, Inoman, Bobonan & Sugcong community members
Public participation meeting for NCC operations (MMT Presentation)	2018	 Sitio Saguitlang, Brgy. Labayug, Sison 	 Sitio Saguitlang community members
Public participation meeting for NCC operations (MMT Presentation)	2018	 Brgy. Inmalog, Sison 	 Brgy. Inmalog community members
Public participation meeting for NCC operations (MMT Presentation)	2018	 Brgy. Calunetan, Sison 	 Brgy. Calunetan community members
Mining, Environment/Pollution Control, Safety and SDMP accomplishments and programs of NCC	28 March 2019	 Pangasinan State University – Urdaneta 	 Civil Engineering Students
Mining, Environment/Pollution Control, Safety and SDMP accomplishments and programs of NCC	28 June 2019	 University of Luzon – Dagupan City 	 Civil Engineering Students
"SDMP Responsible & Sustainable" campaign	18 July 2019	 Brgy. Labayug, Sison 	Brgy. Labayug community membersTESDA graduates
SDMP Health Awareness Program	19 July 2019	 Brgy. Calunetan, Sison 	 Brgy. Calunetan community members
International Day against drug abuse and illicit drug trafficking	26 July 2019	 Brgy. Labayug, Sison 	 Brgy. Labayug community members

Table 5-5-5: IEC Implemented by NCC (2017 to 2019)

NORTHERN CEMENT CORPORATION NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

Environmental Performance Report and Management Plan SECTION 5 SOCIAL DEVELOPMENT PLAN/FRAMEWORK AND IEC FRAMEWORK

Table 5-5-6: Matrix of the I	Project's IEC Plan
------------------------------	--------------------

TARGET SECTOR IDENTIFIED AS NEEDING PROJECT IEC	MAJOR TOPIC/S OF CONCERN IN RELATION TO PROJECT	IEC SCHEME / STRATEGY / METHODS	INFORMATION MEDIUM	INDICATIVE TIMELINES AND FREQUENCY	INDICATIVE COST (PHP)
Residents of Brgy. Labayug Residents of SDMP Barangays	 Personnel requirements and announcement of job opening for potential workers/employees/contractors 	Group ConsultationMulti-media	 Invitation letter Multi-sectoral cluster meetings Newspaper publication Radio broadcast Posters 	At least, two months prior to start of construction	PHP 50,000.00
Municipality of Sison Municipality of Pozorrubio Residents of Brgy. Labayug Farmer Groups NGOs Residents of SDMP Barangays	 Presentation of construction works/activities Potential impacts and proposed mitigation measures during construction works 	 Group Consultation Multi-media 	 Invitation letters Focus Group Discussion Multi-sectoral cluster meetings Handouts Audio-visual presentations on EIA Posters and flyers 	At least 1 month prior to start of construction and quarterly during the entire construction phase	PHP 50,000.00
Municipality of Sison Municipality of Pozorrubio Brgy. Labayug NGOs Residents of SDMP Barangays	 Report on project's compliance to ECC and EMP during construction period 	 Group Consultation Grievance mechanism 	 Invitation Letters Handouts Multi-sector cluster meeting Grievance box (comments, suggestions) at the municipal and barangay halls 	1 month prior to completion of construction works	PHP 25,000.00
Municipality of Sison Brgy. Labayug	 Presentation of completion of construction works and preparation for operation 	 Group Consultation 	Invitation LettersMulti-sectoral meeting	1 month prior to completion of construction phase	PHP 25,000.00
Municipality of Sison Municipality of Pozorrubio Brgy. Labayug NGOs Residents of SDMP Barangays	 Project operation phase Highlight of the project's environmental control measures Compliance to ECC conditionality's and the EMP Actual impacts during construction and control measures implemented 	 Group Consultation Grievance mechanism 	 Invitation letter Handouts Posters Grievance box (comments, suggestions) at the municipal and barangay halls 	Priority to operation phase and yearly thereafter	PHP 40,000.00
Schools NGOs	 Plant tour and highlight of project's environmental control 	 Group Consultation 	 Educational tour to project site 	Throughout the operation phase	PHP 50,000.00

NORTHERN CEMENT CORPORATION

NCC Cement Plant and Quarry Expansion Project

Brgy. Labayug, Sison, Pangasinan

Environmental Performance Report and Management Plan

SECTION 5

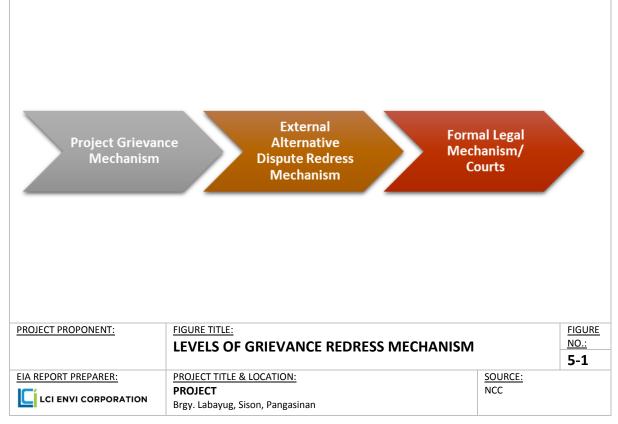
SOCIAL DEVELOPMENT PLAN/FRAMEWORK AND

					ILC I INAML WORK
TARGET SECTOR	MAJOR TOPIC/S OF CONCERN IN	IEC SCHEME /	INFORMATION MEDIUM	INDICATIVE TIMELINES	INDICATIVE
IDENTIFIED AS NEEDING	RELATION TO PROJECT	STRATEGY /		AND FREQUENCY	COST (PHP)
PROJECT IEC		METHODS			
LGUs	measures, SDP, and				
	environmental projects				
Northern Cement Corporation employees	 Awareness and Safety Disaster Risk Reduction and Management Climate Change awareness and adaptation 	 Group Consultation Multi-media 	 Climate change adaptation and disaster risk reduction and management seminar Hazard identification and risk assessment training First aid training 	Once a year	PHP 50,000.00
Brgy. Labayug & SDMP Brgy. Schools	 Climate Change awareness and adaptation Disaster Risk Reduction and Management 	Group ConsultationMulti-media	 Climate change adaptation and disaster risk reduction and management seminar 	Once a year	PHP 50,000.00

5.4 Grievance Redress Mechanism (GRM)

- ⁵⁰³ Grievances are any major or complicated issues which require deeper, and sometimes, deeper understanding which can be resolved through complex, time-consuming and may often involve large expenditures solutions. Hence, different levels of responses are required to register, classify and redress these issues.
- ⁵⁰⁴ **Northern Cement Corporation**, through its Community Relations Office (COMREL) will establish a grievance recording and redress mechanism to efficiently and effectively record and redress any concern, complaint or grievances arising out during the (a) construction and (b) operations phases of the Project.
- ⁵⁰⁵ The redress of the grievances will be coordinated with the COMREL.
- ⁵⁰⁶ Once the construction of the project begins, the designated grievance officer of **Northern Cement Corporation** shall coordinate with the responsible units/departments about any possible complaints, issues and concerns lodged on the project.

5.4.1 General Principles of the Grievance Redress Mechanism


- ⁵⁰⁷ A credible grievance mechanism is necessary for the community, especially the stakeholders, to have confidence that if they lodge a complaint, it will be treated in a fair and objective manner. The fairness of the process is to be understood in the context of the imbalances of power that may exist. The grievance registration or communication process should present no barriers in terms of access (e.g. geographic location/educational attainment/language/access to communication/technology) by the stakeholders.
- Registering a complaint can pose risks for the stakeholders, especially if it concerns issues such as corruption, misconduct, or monetary compensation, or if it interferes with local social and gender norms. Hence, the grievance mechanism should be free of retribution and should proactively consider potential dangers and risks to complainants and incorporate ways to prevent harm. Protection of privacy of the complainant will also be prioritized.

5.4.2 Levels of Grievance Redress Mechanism

⁵⁰⁹ The stakeholders must be fully informed of the proper venue to lodge their complaints or grievances, and of their rights to use alternative measures if they choose to do so if they are not satisfied with the response of the **Northern Cement Corporation** COMREL to their complaints.

⁵¹⁰ Irrespective of the choice of the complainant on the level of grievance management system, **Northern Cement Corporation** will demonstrate a culture of non-retaliation and respect for a community's choice to seek alternative avenues for raising complaints.

5.4.3 Grievance Redress Mechanism Steps

⁵¹¹ The Grievance Redress Mechanism that will be employed for the project is detailed in 6 steps. The GRM is presented in Table **5-4**.

•	Table 5-5-7: Grievance Redress Mechanism
GRM STEP	DESCRIPTION OF THE PROCEDURE
Step 1	 Affected person lodges the complaint.
Step 2	 Northern Cement Corporation COMREL will document and register received complaints during construction and operation of the project.
Step 3	 Two days upon the receipt of the complaint, a meeting will be called between the affected person and Northern Cement Corporation COMREL. The affected person will be immediately informed if the grievance is within, or outside, the purview of the mechanism.
	If the scope is outside, the affected person will be referred to the proper institution and/or proper mechanism for the complaint. If the complaint is within the scope of the project, the resolution of the complaint shall be discussed during the meeting. Investigation will be immediately scheduled for proper resolution of the complaint. After the investigation, the Northern Cement Corporation COMREL will immediately decide on the most suitable internal measure to reduce the impact the source of the complaint while working on the final measure not later than 5 days from the day when the meeting for the complaint was held.

	IEC FRAMEWORK
GRM STEP	DESCRIPTION OF THE PROCEDURE
Step 4	 If the affected person is satisfied with the resolution of the complaint, Northern Cement Corporation COMREL shall obtain a written confirmation of satisfaction from the affected person.
Step 5	 For at least a week after closure of grievance, the Grievance Officer, shall monitor the effectiveness of the resolution.
Step 6	If the issue/impact persists, the affected person can lodge an appeal at the barangay level. The Barangay Chairman shall immediately record the appeal, contact the grievance to discuss the immediate resolution of the issue. If the issue persists despite the second action, the affected person can seek assistance from the Municipal Government. A total of two weeks is given to process, address and monitor a grievance that will arise due to the project implementation.

SECTION 6

ENVIRONMENTAL COMPLIANCE MONITORING

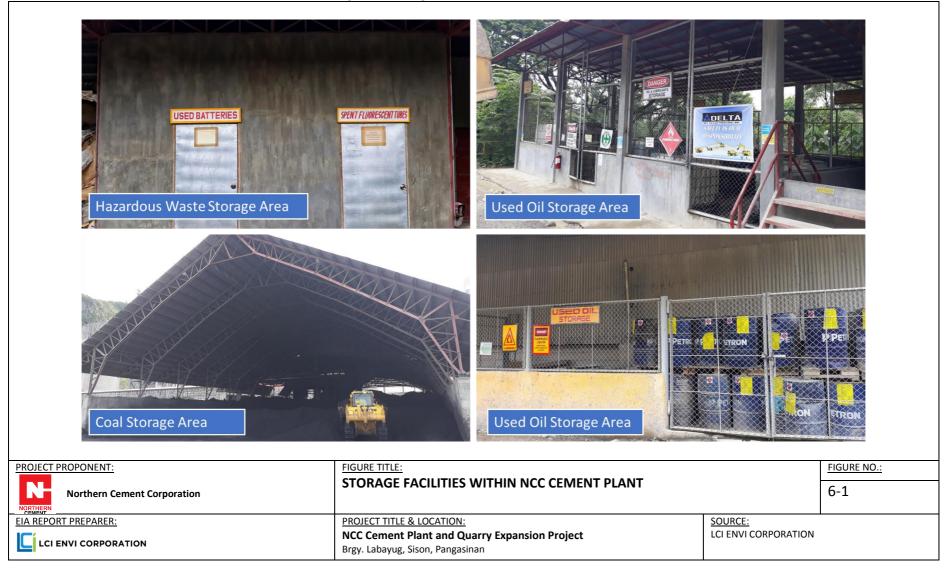
6.1 Environmental Performance

- ⁵¹² **Table** 6-1 shows the ECC conditions of ECC Reference No. 9207-032-301C and the compliance of **Northern Cement Corporation** from these conditions.
- ⁵¹³ NCC is also ISO-certified and implements the Integrated Management System (IMS) that consists ISO 9001(2008), ISO 14001(2004) and 18001(2007).

· · · · ·	NCC to ECC Compliance
ECC Conditions	NCC Compliance
Production capacity should not exceed Four	Based from the SMRs that NCC is submitting, the
Thousand (4,000) metric tons of clinker per day	daily production output of the cement plant does not exceed the allowable limit.
	1 st quarter 2019: 1,827 MT/day clinker 4 th quarter 2018: 2,785 MT/day clinker 3 rd quarter 2018: 2,953 MT/day clinker 2 nd quarter 2018: 2,803 MT/day clinker 1 st quarter 2018: 2,798 MT/day clinker
Limited to cement manufacturing project using	The process used for the cement production is
dry process operation only.	dry process.
Adequate air pollution control devices shall be installed, operated and maintained in accordance with the DENR Region 1 approved	Bag filters and electric precipitators are installed in the cement plant.
plans and specifications.	PTO No. POA-14L-01PA39-001
No amount of liquid wastes shall be discharged by the plant operation to nearby water bodies.	A wastewater discharge permit (WWDP-16J- 01PA39-001) was secured by the proponent from the DENR-EMB Region 1. NCC has three effluent outfalls, all are discharging in the Aloragat River.
Air and noise emissions generated by the operation shall conform with the standards set by EMB-DENR.	As discussed in Section 2.3.2, air and noise emissions generated in the cement plant are within the DENR standards.
All raw materials, coal and bunker oil shall be properly kept in a safe storage facility.	Compliant. Photos of the storage facilities are presented in Figure 6-1.
Maintenance of all process equipment and pollution control facilities shall be effected at all times to obtain maximum efficiency.	Regular maintenance of all equipment is being done.
An Environmental Unit shall be created to	Pollution Control and Environmental
handle the environmental-related aspects of the plant and shall report to EMPAS- DENR	Compliance group was established.
Region 1/EMB-EIA Monitoring Unit on a regular basis.	MEPEO: Russel Dan Dictag Jr. PCO: Engr. Bernardino O. Narciza
On the even emissions exceed the standards as determined by DENR monitoring team, plant operation shall be temporarily stopped until	As discussed in Section 2.3.2, air and noise emissions generated in the cement plant are within the DENR standards.

Table 6-1: Compliance of NCC to ECC Compliance

ECC Conditions	NCC Compliance
such time that appropriate remedial measures are undertaken.	
Adequate safety gadgets shall be provided for the workers to prevent health and occupational hazards posed by the workers.	PPEs are provided to all workers as part of the Occupational Safety and Health policy of NCC at no cost.
All mitigating measures as contained in the submitted document shall be strictly implemented.	NCC is submitting its CMR to EMB.
Regular medical check-up shall be provided for the workers.	Annual physical examination is conducted to the workers as part of the Occupational Safety and Health policy of NCC.
Quarterly monitoring report regarding the plant's operation shall be submitted to EMB/DENR 1 for evaluation.	NCC is submitting its SMR report to EMB Region 1.
On the spot monitoring and inspections can be initiated by the EMB-DENR Region 1 anytime in coordination with the concerned groups.	NCC is always open for DENR – EMB inspection at any time. The MMT regularly conduct quarterly monitoring/compliance report verification activities.
That an Environmental Guarantee Fund shall be initiated by Northern Cement Corporation, the amount and mechanics of which shall be determined by EMB and NCC representatives within 60 days from receipt of this ECC	EGF is established and being maintained by the proponent.
That reforestation shall be undertaken by the management at the mined-out areas to replace cut trees.	NCC has been conducting reforestation activities for its mine-out areas since 2001 under its Mining Forest Program. As of March 2019, the total area that the NCC has planted within the MPSA is 230.85 hectares.
Transfer of ownership of this project carries the same conditions in this ECC for which written notification to the EMB must be made within 15 days from such transfer.	Not applicable


514

⁴ A notice of violation was given to NCC last August 23, 2017 for violating ECC condition no. 9 of ECC-CO-9207-032-01. Shale extraction was done by NCC outside the MPSA with approximate area of 11.5 hectares. However, quarry operation in the said area was already stopped and rehabilitation activities were already started. Presently, the said areas are subject to continuing re-vegetation and already included in the company's Progressive Rehabilitation Program. The very recent tree planting activity on the area was on June 11, 2019 covering an area of approximately 1 hectare.

Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

Figure 6-1: Storage Facilities Within NCC Cement Plant

Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

Figure 6-2: Photos of Rehabilitation Activities within the Shale Quarry Area outside the MPSA

6.2 Self-Monitoring Plan

- ⁵¹⁵ The Environmental Monitoring Plan (EMoP) presents a set of critical environmental parameters that will allow the Northern Cement Corporation to ensure environmental compliance and sustainability of its operations. The EMoP allows monitoring, verification, and performance of the necessary corrective measures towards the mitigation of the identified environmental impacts. Information obtained during the EMoP implementation can be used in examining the short and long-term effects of the proposed Project's various environmental aspects, from which future strategies on environmental enhancement measures can be formulated.
- ⁵¹⁶ **Table** 6-2 presents the EMoP that is being implemented by NCC. Shown in the matrix are the concerns, parameters, monitored, as well as the corresponding sampling and measurement plan (method, frequency, location), lead person, annual estimated cost, and environmental quality performance level (EQPL) range (i.e., Alert, Action, Limit).
- ⁵¹⁷ **Northern Cement Corporation** monitors its compliance through regular submission of Self-Monitoring Report (SMR) and Compliance Monitoring Report (CMR) to DENR-EMB. A copy of monitoring reports is annexed to this report (**Annex 10**).

POTENTIAL

PARAMETER

	IMPACTS PER	TO BE	Method		Location		ESTIMATED		EQPL Range	
ENVIRONMENTAL ASPECTS PER	ENVIRONMENTAL	MONITORED	Method	Frequency	Location	PERSON	ESTIMATED COST	Alert	EQPL Range Action	Limit
PROJECT PHASE	SECTOR						2031	Aich	Action	Linit
	CONTRUCTION PHASE	ES								
Local Sourcing of Labor	People: Employment Opportunities	No. of employees from host barangays	Record no. of employees from host barangays	During pre- construction	Administration Office of the Project	Northern Cement Corporation	Minimal	N.A.	N.A.	N.A.
Construction and installation of plant and support facilities	Solid Waste Generation	Weight of waste generated	Weighing/ log-book recording	Daily/weekly	Waste storage facility	Northern Cement Corporatio n	Part of operation costs	50% of maximum storage capacity	80% of maximum storage capacity	Maximum storage capacity
	People: Occupational health and safety	No. of work- related illnesses/ injuries, No. of safety man- hours	Log-book/ database registration	Daily	Administration office of the project site	Northern Cement Corporatio n	Minimal	1 Non-Lost Time Accident	Multiple Non- Lost Time Accident	1 Lost Time Accident
	Water Quality: Impact on surface water quality	pH TSS Fecal Coliform Oil & Grease	Refer to EMB MC 2016-12	Quarterly	Refer to Figure 6-1	Northern Cement Corporatio n	PHP 10,000 per parameter	6.5-7.5 60 mg/L 180 MPN/100mL 1 mg/L	8.0-8.5 65 mg/L 190 MPN/100mL 1.5 mg/L	6.5-9.0 80 mg/L 200 MPN/100mL 2 mg/L
	Water Quality: Impact on ground water quality	pH Fecal Coliform	Refer to EMB MC 2016-12	Quarterly	Refer to Figure 6-1 (new GW sampling point	Northern Cement	PHP 10,000 per parameter	6.5-8.0 8.0 MPN/100mL	8.0-8.5 9.0 MPN/100mL	6.5-9.0 10.0 MPN/100mL
		Oil & Grease			along aloragat)	Corporatio n	parameter	0.5 mg/L	0.75 mg/L	1.0 mg/L
		NO ₂		Quarterly				105 μg/NCM	135 μg/NCM	150 μg/NCM

SAMPLING AND MEASUREMENT PLAN

Table 6-2: Matrix of Environmental Monitoring Plan (EMoP)

ANNUAL

LEAD

Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

EQPL MANAGEM

ENT SCHEME		
l Alert	Management M Action	easures Limit
N.A.	N.A.	N.A.
Prepare waste for disposal by third party	Contact third party for waste for disposal	Disposal of waste by third party.
Investigate, Do necessary actions.; Re-training of staff regarding health and safety guidelines	Investigate, Do necessary actions.; Review and reinforce safety guidelines.; Re-training of staff regarding health and safety guidelines.	Investigate, Do necessary actions.; Review and reinforce safety guidelines.; Re-training of staff regarding health and safety guidelines.; Stricter implementation of health and safety guidelines
Investigate, identify non- point sources	Investigate, identify non- point sources; Conduct maintenance of septic tanks, drainage and siltation ponds	Investigate, identify non-point sources, repair damages/ defects, repeat analysis
Investigate, identify non- point sources	Investigate, identify non- point sources; Conduct maintenance of septic tanks and drainage	Investigate, identify non-point sources, repair damages/ defects, repeat analysis

Use of Heavy	Air Quality: Impact	SO ₂	DAO 2000-		Refer to Figure	Northern	PHP 20,000	125 μg/NCM	160 μg/NCM	180 µg/NCM	Continuous	Continuous	Investigate
Equipment	on Ambient Air	TSP	81 Analysis		6-1	Cement	per station	180µg/ NCM	200µg/ NCM	230µg/ NCM	maintenance	maintenance	condition of
	Quality and Noise	PM ₁₀	Methods			Corporation	per event	500 mg/NCM	550 μg/NCM	600 μg/NCM	of heavy equipment	of heavy equipment; Investigate, identify non- point sources	equipment; Repair damages/ defects, repeat analysis
Use of Heavy Equipment	Hazardous Waste Generation (used oil)	Volume of wastes generated	Number of drums/log- book recording; Weighing/ log-book recording	Weekly	Waste storage facility (Refer to DAO 1992- 29)	Northern Cement Corporatio n	Part of operation costs	50% of maximum storage capacity	80% of maximum storage capacity	Maximum storage capacity	Ensure proper storage of hazardous waste, as stipulated in HW ID. Prepare hazardous waste for treatment/ disposal by third party (Refer to DAO 1992- 29)	Ensure proper storage of hazardous waste, as stipulated in HW ID. Contact third party for hazardous waste for treatment/ disposal (Refer to DAO 1992- 29)	Treatment/disposal of hazardous waste by third party. (Refer to DAO 1992- 29)
OPERATION PHASE	1	1	I	1		1	1			· ·	1	1	
Operation of cement plant and	Air Quality: Impact on Ambient Air	NO ₂	DAO 2000- Quarter 81 Analysis Methods	Quarterly	Quarterly Refer to Figure 6-1.	Northern Cement Corporation	PHP 50,000 per station on per event	80 μg/NCM	120 μg/NCM	150 μg/NCM	Continuous maintenance of engines	maintenance of engines; Investigate,	Investigate condition of engines; Repair damages/ defects, repeat analysis
quarry	Quality	CO						25 mg/NCM	30 mg/NCM	35 mg/NCM			
		SO ₂ ,						120 μg/NCM	150 μg/NCM	180 µg/NCM			
		TSP						180µg/ NCM	200µg/ NCM	230µg/ NCM			
		PM10						120 mg/NCM	150 μg/NCM	200 µg/NCM			
		As						0.01 mg/NCM	0.015 mg/NCM	0.02 mg/NCM			
		Cd						0.005 mg/NCM	0.008 mg/NCM	0.01 mg/NCM			
		Sb						0.01 mg/NCM	0.015 mg/NCM	0.02 mg/NCM			
		Pb						10 µg/NCM	15 μg/NCM	20 µg/NCM			
Operation of cement plant and quarry	Noise	Noise	Digital sound level meter	Quarterly	Refer to Figure 6-1.			65 dB	70 dB	75 dB	Continuous maintenanc e of engines	Continuous maintenance of engines; Investigate, identify non- point sources	Investigate condition of engines; Repair damages/ defects repeat analysis
Operation of	Stack Monitoring	СО				Northern		300 mg/NCM	400 mg/NCM	500 mg/NCM	Continuous	Investigate,	Investigate, identify
cement plant		NO]			Cement		300 mg/NCM	400 mg/NCM	500 mg/NCM	maintenance of	identify non- point	non-point sources, repair damages/
		SOx				Corporatio		100 mg/NCM	150 mg/NCM	200 mg/NCM	equipment.	sources	defects, repeat
		PM	CONS	Continue		n		80 mg/NCM	100 mg/NCM	150 mg/NCM	Continuous		analysis
		As	COMS	Continuous	EP 1 and EP 2			5 mg/Ncm	8 mg/Ncm	10 mg/Ncm	monitoring.		
		Cd						5 mg/Ncm	8 mg/Ncm	10 mg/Ncm			
		Sb	1					5 mg/Ncm	8 mg/Ncm	10 mg/Ncm			
		Pb						5 mg/Ncm	8 mg/Ncm	10 mg/Ncm	1		
Operation of	Water Quality:	рН	Refer to EMB	Quarterly	Refer to Figure	Northern	PHP 10,000	6.5-7.5	8.0-8.5	6.5-9.0	Continuous	Investigate,	Investigate, identify
cement plant and quarry	Impact on surface water quality	TSS	MC 2016-12		6-1	Cement Corporatio	per parameter	60 mg/L	65 mg/L	80 mg/L	0 mg/L maintenance iden	identify non- point	non-point sources, repair damages/
quairy	water quality	Fecal Coliform				n		180 MPN/100mL	190 MPN/100mL	200 MPN/100mL	system.	sources	repair uarriages/

Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

		Oil & Grease						1 mg/L	1.5 mg/L	2 mg/L	Continuous monitoring.	Conduct maintenance of septic tanks, drainage and siltation ponds	defects, repeat analysis
Operation of cement plant and quarry	Water Quality: Impact on Groundwater quality	pH Fecal Coliform Oil & Grease	Refer to EMB MC 2016-12	Quarterly	Refer to Figure 6-1	Northern Cement Corporatio n	PHP 10,000 per parameter	6.5-8.0 8.0 MPN/100mL 0.5 mg/L	8.0-8.5 9.0 MPN/100mL 0.75 mg/L	6.5-9.0 10.0 MPN/100mL 1.0 mg/L	Continuous maintenance of treatment system. Continuous	Investigate, identify non- point sources	Investigate, identify non-point sources, repair damages/ defects, repeat analysis
Operation of cement plant and quarry	People: Occupational health and safety	No. of work- related illnesses/ injuries, No. of safety man- hours	Log-book/ database registration	Daily	Administration office of the project site	Northern Cement Corporatio n	Minimal	1 Non-Lost Time Accident	Multiple Non- Lost Time Accident	1 Lost Time Accident	monitoring. Investigate, Do necessary actions. Re- training of staff regarding health and safety guidelines	Investigate, Do necessary actions. Review and reinforce safety guidelines. Re-training of staff regarding health and safety guidelines.;	Investigate, Do necessary actions. Review and reinforce safety guidelines. Re- training of staff regarding health and safety guidelines. Stricter implementation of health and safety guidelines
Operation of cement plant and quarry	People: Potential negative Public Perception	No. of valid complaints	Consultation with local officials and residents	Upon official request /summon of the local barangay office	Host Municipality	Northern Cement Corporatio n	Minimal	1 minor complaint, such as nuisance complaints (e.g. noise caused by operation)	Multiple minor complaints such as nuisance complaints (e.g. noise caused by operation)	1 major complaint (incidents causing loss of life, damage to private property, adverse effects to health an economics)	Investigate, address issue accordingly	Investigate, address issue accordingly. Review and reinforce safety guidelines. Re-training of staff regarding health and safety guidelines.	Investigate, address issue accordingly. Review and reinforce safety guidelines. Re- training of staff regarding health and safety guidelines. Increase community IEC regarding measures taken to solve major complaints. Get feedback from community regarding acceptability or adequacy of actions taken to mitigate major concerns.
Operation of cement plant and quarry	Solid Waste Generation	Weight of waste generated	Weighing/ log-book recording	Daily/ weekly	Waste storage facility	Northern Cement Corporatio n	Part of operation costs	50% of maximum storage capacity	80% of maximum storage capacity	Maximum storage capacity	Prepare waste for disposal by third party	Contact third party for waste for disposal	Disposal of waste by third party.

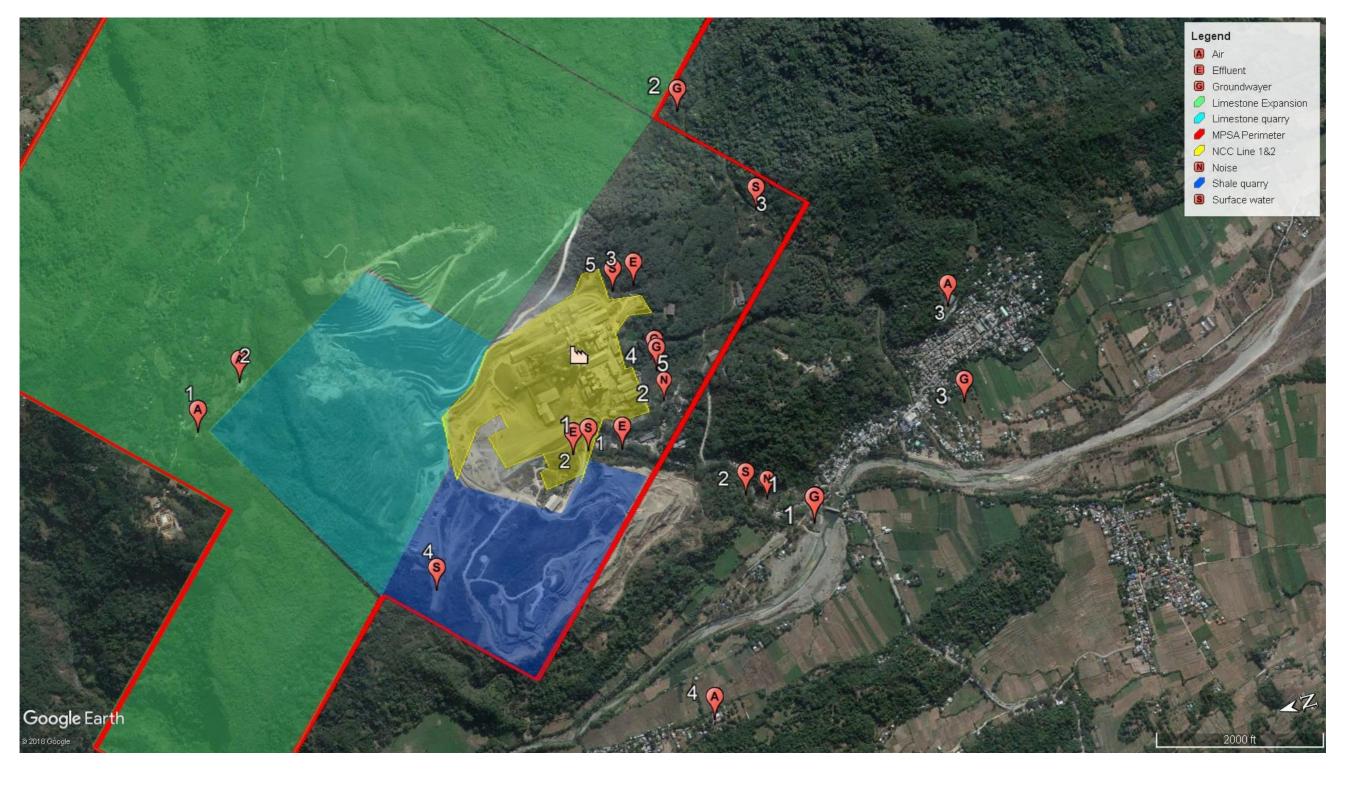
Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

Operation of cement plant and quarry	Hazardous Waste Generation (used oil, oil- contaminated materials, BFLs)	Volume of wastes generated	Number of drums/log- book recording Weighing/ log-book recording	Weekly	Waste storage facility (Refer to DAO 1992- 29)	Northern Cement Corporatio n	Part of operation costs	50% of maximum storage capacity	80% of maximum storage capacity	Maximum storage capacity
Effluent from plant site	Water Quality: Degradation of water quality due to effluent discharge	Oil and Grease pH TSS	Refer to EMB MC 2016-12	Quarterly	Refer to Figure 6-1	Northern Cement Corporation	PHP 10,000 per parameter	3 6.0-9.5 90 mg/L	4 6.0-9.5 95 mg/L	5 6.0-9.5 100 mg/L
ABANDONMENT PHA	ASE									
Pull-out of equipment, decommissioning of fuel storage, abandonment of	Generation of Demolition spoils and solid wastes	Weight (kg); no. of items	Weighing/ log-book recording	Daily/ weekly	Project Site	Northern Cement Corporatio n	To be deter- mined	N.A.	N.A.	N.A.
offices	Potential negative public perception	No. of valid complaints	Consultation with local officials and residents	Variable	Host Municipality	Northern Cement Corporation	PHP 40,000 per consultation	1 minor complaint, such as nuisance complaints (e.g. noise caused by decommissioning, inconvenience and traffic caused by trucks)	Multiple minor complaints such as nuisance complaints (e.g. noise caused by decommissionin g, inconvenience and traffic caused by trucks)	1 major complaint (incidents causing loss of life, damage to private property, adverse effects to health an economics)

Notes: EQPL = Environmental Quality Performance Level

Alert or Red Flag: early warning

• Action Level: point where management measures must be employed so as not to reach the regulated threshold or limit level, or to reduce deterioration of affected environmental component to pre-impact or optimum environmental quality


• Limit Level: regulated threshold of pollutant (standard that must not be exceeded); point where emergency response measures must be employed to reduce pollutants to lower than standard limit.

Environmental Performance Report and Management Plan SECTION 6 ENVIRONMENTAL COMPLIANCE MONITORING

Ensure proper storage of hazardous waste, as stipulated in HW ID. Prepare hazardous waste for treatment/ disposal by third party (Refer to DAO 1992- 29)	Ensure proper storage of hazardous waste, as stipulated in HW ID. Contact third party for hazardous waste for treatment/ disposal (Refer to DAO 1992- 29)	Treatment/disposal of hazardous waste by third party. (Refer to DAO 1992- 29)
Continuous maintenance of treatment system. Continuous monitoring.	Investigate, identify non- point sources	Investigate, identify non-point sources, repair damages/ defects, repeat analysis

	N.A.	N.A.	N.A.
f	Investigate, address issue accordingly	Investigate, address issue accordingly. Review and reinforce safety guidelines. Re-training of staff regarding health and safety guidelines.	Investigate, address issue accordingly. Review and reinforce safety guidelines. Re- training of staff regarding health and safety guidelines. Increase community IEC regarding measures taken to solve major complaints. Get feedback from community regarding acceptability or adequacy of actions taken to mitigate major concerns.

PROJECT PROPONENT: Northern Cement Corporation	FIGURE TITLE: MONITORING STATIONS FOR NCC
	PROJECT TITLE & LOCATION: NCC Cement Plant and Quarry Expansion Project
	Brgy. Labayug, Sison, Pangasinan

<u>:</u>

Table 6-3: Monitoring Stations for NCC

Environmental	Station	Location	Coordin	ates
Component			Latitude	Longitude
Ground water	GW1	Deepwell 1	16° 9'31.86"N	120°33'38.74"E
	GW2	Milagrosa Spring	16°9'35'' N	120°34'32'' E
	GW3	Deepwell in Brgy. Labayug	16°9'11'' N	120°33'48'' E
	GW4	Deepwell 2	16°9'45'' N	120°34'3'' E
	GW5	Deepwell 3	16°9'45'' N	120°34'2'' E
Noise	N1	Delta Barracks	16° 9'36.50"N	120°33'43.10"E
	N2	NCC Canteen	16° 9'45.10"N	120°33'58.20"E
Effluent	E1	OWS	16° 9'51.40"N	120°33'53.80"E
	E2	New Coal Settling pond	16° 9'57.18"N	120°33'54.72"E
	E3	Cabuar Limestone Siltation Pond	16° 9'47.50"N	120°34'12.80"E
Surface Water	S1	Upper Bagutan Creek	16° 9'55.31"N	120°33'54.71"E
	S2	Lower Bagutan Creek	16° 9'38.80"N	120°33'44.30"E
	S3	Sapid Creek	16° 9'28.60"N	120°34'17.70"E
	S4	Buli Creek	16°10'17.00"N	120°33'43.20"E
	S5	Cabuar Creek	16° 9'47.50"N	120°34'12.80"E
Air	A1	Sitio Saguitlang	16°10′39.17″N	120°34′9.80″E
	A2	Sitio Saguitlang Elementary School	16°10'32.84"N	120°34'14.35"E
	A3	Labayug National High School	16° 9'9.82"N	120°33'59.90"E
	A4	Inmalog Elementary School	16° 9'49.45"N	120°33'18.73"E

6.3 Multi-Sectoral Monitoring Framework

- ⁵¹⁸ The Monitoring Framework, as stated in Annexes 3-2 and 3-4 of DAO No. 2003-30, presents a proposed program wherein the proposed Project's environmental compliance will be verified and reported to concerned stakeholders. These stakeholders are composed of government regulators and recognized non-governmental organizations (NGOs) that have valid issues and concerns on the proposed Project. NCC, together with the stakeholders, form a Multi-partite Monitoring Team (MMT).
- ⁵¹⁹ The MMTs objective is to provide a venue to discuss the important concerns of the Project. These concerns may involve the following items:
 - Verify the compliance of NCC in its ECC and EMP;
 - Validate the proposed Project's conformance to government standards, and NCC's submission of necessary post-ECC documentation requirements;
 - Identify the legitimate concerns of the host community, in relation to the implementation of the proposed Project;
 - Determine the extent and scale of the environmental impacts generated by the Project;
 - Provide additional information, education, and communication (IEC); and

- Integration/documentation of complaints, suggestions, and compromise agreements.
- ⁵²⁰ The MMT members and their corresponding roles and regulations for the quarry operations are presented in **Table** 6-4. The Region 1 Office of the MGB heads the MMT of the proposed project. Other members are the DENR Region 1 Office, NCC and representatives from the affected communities.

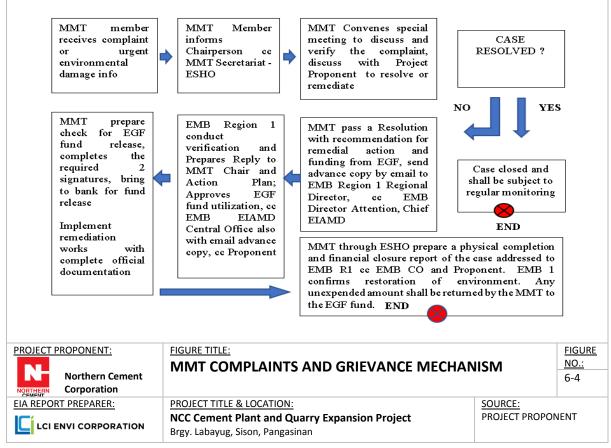
Table 6-4: List of Members and Respective Roles of the MMT for NCC quarry				
Member	Role/Responsibility			
MGB Region 1 Office	 Presides as the head of the MMT Oversees NCC's compliance to environmental regulations 			
DENR Region 1 Office	Oversees NCC's compliance to environmental regulations			
Environment and Natural Resources Office- Natural	Oversees NCC's compliance to			
Resources Regulatory Group (ENRO-NRRG)	environmental regulations			
Northern Cement Corporation	Provide budget for MMT activitiesSubmission of related information			
Brgy. Labayug LGU	Member			
Brgy. Inmalog LGU	Member			
Brgy. Pladit LGU	Member			
Brgy. Calunetan LGU	Member			
Brgy. Sugcong LGU	Member			
NGO Representative	Member			
Indigenous Community Representative	Member			

Table 6-4: List of Members and Respective Roles of the MMT for NCC quarry

- ⁵²¹ For the MMT of the NCC cement plant, a Memorandum of Agreement between DENR and NCC is being finalized. The MMT will be composed of government regulators (LGU representatives) and recognized non-governmental organizations that have valid issues and concerns on the proposed project. The proponent shall provide appropriate funding for the MMT activities based on the Annual Work and Financial Plan approved by EMB. DENR-EMB must provide guidance to the MMT and shall conduct performance audits of the MMT. The list of the MMT for the NCC cement plant is shown in **Table** 6-5.
- ⁵²² **Northern Cement Corporation** will continue to regularly conduct consultations/meetings with the MMT members. These meetings shall be conducted quarterly and annually. Special meetings may also be held if necessary, most especially during emergency situations or other important occasions that require immediate resolution.

COMPOSITION	MEMBER	ROLE/RESPONSIBILITY
LGU representatives	(1) representative from the Municipal Environment and Natural Resources Office (MENRO) of Sison	 Serve as the MMT chair Oversee Proponent's compliance to environmental regulations Issue/revoke the ECC of the Project as mandated
	(1) Rural Health Unit (RHU) Chief or Municipal Health Officer (MHO) of Sison	 Exercise local authority and knowledge on environmental and social conditions in the project impact area
One representative from an LGU-accredited local NGOs with mission/s specifically related to environmental management	Labayug Mountain Base Agro-forestry Association Inc.	 Represent the mission/s of the NGO

Table 6-5: Proposed Composition of the MMT for the NCC Cement Plant


COMPOSITION	MEMBER	ROLE/RESPONSIBILITY
Maximum of 2 community leaders selected in accordance with the procedures described in the MOO	 Indigenous People Mandatory Representative (IPMR) Women and Head Office of Senior Citizen Affairs 	 Represent vulnerable sectors in the project impact area
Other government agencies	DENR	 Carry out mandate considering the project type and its expected impacts
Reference: DENR Administrative Ord	er No. 2017-15	

6.4 Complaints Management

- ⁵²³ The MMT shall establish an environmental emergency communication system and complaintsreceiving mechanism which shall include systems for transmitting recommendations for regulatory action to EMB in a timely manner to prevent adverse environmental impacts. An MMT Complaints and Grievance Committee shall be part of the MMT Organization. The Project Compliance Officer shall serve as support secretariat.
- ⁵²⁴ An indicative process flow for environmental emergency communication and complaints management is shown in the diagram below:

Figure 6-4: MMT Complaints and Grievance Mechanism

6.5 Environmental Guarantee and Monitoring Fund Commitments

- ⁵²⁵ The **Environmental Trust Fund (ETF)** pertains to the fund to be set up by a project proponent which shall be readily accessible and disbursable for the immediate clean-up or rehabilitation of areas affected by damages in the environment and the resulting deterioration of environmental quality as a direct consequence of a project's construction, operation or abandonment. It shall likewise be used to compensate parties and communities affected by the negative impacts of the project, and to fund community-based environment related projects including, but not limited to, information and education and emergency preparedness programs.
- ⁵²⁶ The **Monitoring Trust Fund (MTF)** is the fund that will cover the expenses of the monitoring program approved by the MTF committee. The minimum amount for this fund is Php 150,000 to cover the maintenance and other operating budget incurred by the monitoring team. Replenishment of this amount shall be done quarterly to correspond to the expenses incurred by the monitoring team.
- ⁵²⁷ The **Rehabilitation Cash Fund (RCF)** is the fund reserved to ensure the compliance of the proponent to the approved rehabilitation activities and schedules. The fund will be annually replenished to maintain the minimum amount required.
- ⁵²⁸ The **Final Mine Rehabilitation and Decommissioning Fund (FMRDF)** ensures the availability of the full cost contained in the approved Final Mine Rehabilitation and/or Decommissioning Plan (FMR/DP). This fund will only be utilized for the implementation of all the decommissioning and/or rehabilitation activities presented in the FMR/DP for the succeeding years until the objectives of the mine closure have been achieved.

Table 6-6: Various Fund Commitments of Northern Cement Corporation

Fund	Deposited Amount as of June 7, 2019
Environmental Trust Fund	55,154.93
Monitoring Trust Fund	200,089.96
Rehabilitation Cash Fund B	5,115,965.62
Final Mine Rehabilitation Fund	17,851,619.73
Total	23,222,830.24

SECTION 7

DECOMMISSIONING/ABANDONMENT/REHABILITATION POLICY

7.1 Post-Construction Decommissioning

- ⁵²⁹ After the construction, the project site will be thoroughly cleaned as preparation for the operation. All the temporary facilities installed in the project site will be properly dismantled and removed including the equipment brought in the project site. Heavy equipment will be removed at the site during nighttime so that it will not affect the traffic in the project site. It will be ensured that there will be no oil spills during the decommissioning of the equipment.
- ⁵³⁰ All the wastes generated will be properly disposed or recycled. Construction debris and domestic wastes will be segregated, and all residual wastes will be hauled out by the Municipal waste collectors. All hazardous wastes will also be collected by DENR-registered haulers. Human wastes from the portable toilets will be properly siphoned by DENR-register desludgers. No wastes will be left in the project site.

7.2 Project Decommissioning/Abandonment

- ⁵³¹ **Northern Cement Corporation** will allocate sufficient time and available resources if the decommissioning, abandonment, and/or rehabilitation of the Project will be necessary. Depending on the nature and reasons for abandonment, some facilities, such as the containers used as offices, may not be necessarily demolished or removed from the site, since some of these can be useful for other applications. Otherwise, proper dismantling, removal, and transportation of the structures, equipment, and machineries from the existing site will be conducted to minimize possible or further threats to the surrounding environment. Other activities that will be done during this Phase are:
 - Proper advice and compensation to all affected personnel;
 - Securing of necessary government clearances related to the abandonment of the existing Project (including request for the relief of ECC conditions and commitment);
 - Removal of solid, liquid, and hazardous wastes within the site through DENR-certified waste transporter/treater; and
 - Clean-up and possible remediation of the site, if future evaluations and testing suggest that such activity is applicable.
- ⁵³² Some plant facilities, such as office and accommodation buildings, can be repurposed by the community. Cement manufacturing facilities such as crushing plant, kilns, etc. will be removed while storage facilities can be repurposed. Siltation ponds will be backfilled and re-vegetated. The limestone quarry will be stabilized and re-vegetated. The proposed final land use of the cement plant complex and quarry areas after the decommissioning or rehabilitation is presented in **Table** 7-1.

Process/Component	Proposed Final Land Use					
Cement Plant Complex						
Cement Plant and Facilities	 Stable and re-vegetated area. Removal of structures and possibly transferred to other projects or sold. Retained storages for other useful purpose. 					
Office and accommodation buildings	Retained facilities for other useful purpose.					

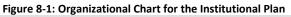
Table 7-1: Proposed Final Land Use of Project Site After Decommissioning and/or Rehabilitation

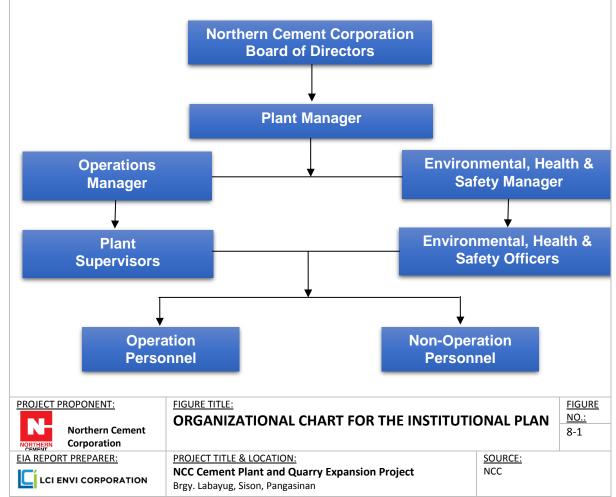
Process/Component	Proposed Final Land Use
	 Laboratory and motor pool equipment and other items will be removed and transferred to another project or sold.
 Silt traps/ponds and drainage system 	 Silt traps/ponds backfilled and revegetated. Water reservoir retained as recreation/picnic area. Drainage system retrofitted to conform to proposed final land use.
Limestone Quarry	
Active/Un-rehabilitated Quarry Areas	 Stable and re-vegetated area.
 Siltation traps/ponds and drainage system 	 Stable and re-vegetated area. Drainage system retrofitted to conform to proposed final land use.

- ⁵³³ The Final Mining Rehabilitation and Decommissioning Plan (FMRDP) of the Northern Cement Corporation is attached in the **Annex 11**. This was already submitted to the MGB. Northern Cement Corporation already started its rehabilitation activities to the mined-out areas within its MPSA. As of 2018, NCC already conducted reforestation to 230.85 hectares of land inside the MPSA.
- ⁵³⁴ **Northern Cement Corporation** commits to prepare and submit an amended version of the FMRDP three (3) months after the issuance of the Environmental Compliance Certificate. The amendments should include (but not limited to) updated fund commitments owing to higher operation expenses and a graphic presentation of the proposed rehabilitation programs of the FMRDP.

SECTION 8

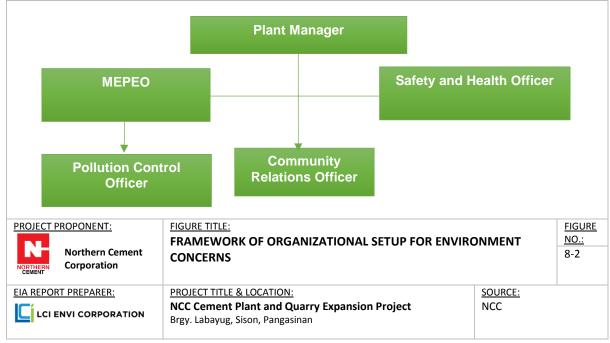
INSTITUTIONAL PLAN FOR EMP IMPLEMENTATION


- ⁵³⁵ The institutional organization of the cement plant as shown in
- ⁵³⁶ **Figure** 8-1 contains people with their assigned responsibilities that require interaction between **Northern Cement Corporation's** different departments. The objective of this organization is to achieve the following:
 - Economical and safety operations and maintenance of the proposed project's components;
 - Implementation of company policies;
 - Environmental compliance and sustainability; and
 - Promotion and enhancement of the social acceptability of the proposed project.
- ⁵³⁷ The institutional organization will involve **NCC's** top-level management, since this group is responsible for providing the corporate direction and policies of the company. The policies shall then be disseminated to department heads and managers for implementation of the company personnel, including those who will be working on the operations of the proposed project.
- ⁵³⁸ **Northern Cement Corporation** will also continue to establish a partnership with relevant government agencies, various stakeholders and local host communities in relation to the project. This partnership is necessary to maintain a transparent and positive relationship for the proposed project and its stakeholders, as well as to ensure that the environmental protection and enhancement measures are complied with. The following are the identified key stakeholders of the project:
 - Municipal LGU of Sison, Pangasinan (host municipality)
 - Municipal LGU of Pozorrubio, Pangasinan (adjacent municipality)
 - Brgy. Calunetan, Sison (SDMP barangay)
 - Brgy. Inmalog, Sison (SDMP barangay)
 - Brgy. Labayug, Sison (host barangay)
 - Brgy. Paldit, Sison (SDMP barangay)
 - Brgy. Sugcong, Pozorrubio (SDMP barangay)
 - Residents and community organizations that will be affected by the proposed project;
 - Farmers' organizations;
 - Chamber of Commerce;
 - Various industry organizations;
 - Local peace-and-order councils (i.e., PNP, Barangay Police); and
 - Other concerned non-government organizations.


Northern Cement Corporation commits to:

- Comply with the conditions that will be stipulated in the ECC and other related environmental laws;
- Foster mutually beneficial partnership and cooperation with host communities;
- Promote sustainable use and responsible development of resources by adopting appropriate technologies;
- Develop livelihood programs and upgrade skills of host communities to contribute and enhance the quality of life; and
- Develop training programs for its employees which will ensure that they will be continually prepared for the tasks assigned to them.

539



⁵⁴⁰ Northern Cement Corporation has established its Pollution Control and Environmental Group to manage environmental concerns and to monitor the compliance of the cement plant and quarry operation to environmental laws. Members of the team are composed of the Mine Environmental Protection and Enhancement Office (MEPEO), Pollution Control Officer, Safety and Health Officer and the Community Relations Officer.

Figure 8-2: Framework of Organizational Set-up for Environment Concerns

