

Republikang Pilipinas National Irrigation Administration

(Pambansang Pangasiwaan ng Patubig) Lungsod ng Quezon

Office Address: National Government Center EDSA, Diliman, Quezon City, Philippines Telephone Nos.: (02) 929-6071 to 78 Website: Telefax No.: TIN No.: www.nia.gov.ph (632) 928-9343 000-916-415

[Photo of Consultation Meeting of NIA Staff and Consultant Team] San Nicolas, Ilocos Norte

Test Consultants, Inc.

Suite 3202, Antel Global Corporate Center Julia Vargas Ave. Ortigas Center, Pasig City Tel. Nos. (632)-584-7198; (632)-631-7424

TABLE OF CONTENTS

1 PROJE	CT DESCRIPTION	1
1.1 PF	ROJECT LOCATION	1
1.2 PF	ROJECT RATIONALE	2
1.3 EX	KISTING GEOLOGICAL CONDITIONS	3
1.4 PF	ROJECT ALTERNATIVES	6
1.4.1	Comparison Based on Rice Production	7
1.4.2	Comparison based on labor requirements	8
1.4.3	Comparison based on Infrastructure	9
1.5 Pł	HYSICAL PROJECT COMPONENTS	10
1.5.1	Dam and Appurtenant Structures	11
1.5.2.	Hydropower	16
1.5.3.	Irrigation and Drainage	17
1.6 PF	ROJECT PHASES AND TIMETABLE	25
1.7 SC	CREENING OF ENVIRONMENTAL ASPECTS, IMPACTS, AND RISKS	25

LIST OF TABLES

2
2
8
8
9
11
17
19
22
26

LIST OF FIGURES

Figure 1: Project Location Map	1
Figure 2: Development Plan of the Ilocos Norte Irrigation Project – Stage II	10
Figure 3: Typical Canal Section	18

ANNEXES

ANNEX A	-	INFORMATION EDUCATION AND COMMUNICATION (IEC) ACTIVITIES
ANNEX B	-	INITIAL PERCEPTION SURVEY (IPS) REPORT

PROJECT DESCRIPTION

1.1 PROJECT LOCATION

1

The proposed Project encompasses the provinces of Ilocos Norte and Ilocos Sur, where the target service area is located; and the province of Abra, where the envisaged dams, reservoir and appurtenant structures are located.

The Project, through its irrigation canal network, will provide augmentative water supply to the existing irrigated areas, and basal water supply to the new service area—to achieve 2 crops of rice in a year, and, through its drainage canal network, to discard any excess water in the service area.

The target service area is 480 km from Metro Manila via the Manila–Ilocos Norte national highway, and 20 to 35 km south of the capital city of Laoag—bordered on the west by the West Philippine Sea and on the east by the Cordillera Central Mountains and Ilocos Mountain Range.

The service area covers whole or parts of 8 municipalities—such as Solsona, Dingras, Batac, Paoay, Pinili, Badoc, Nueva Era and Sinait—that are noted for the production of rice and nonrice field crops, like onion, garlic, tomato, and tobacco.

Figure 1: Project Location Map

1.2 PROJECT RATIONALE

Poverty incidence is most endemic in rural areas—so, the Project is, as envisioned, the physical intervention that would address the situation relying on its impact: increase cropping intensity and crop yield, would usher in more farm output, crop income and better farmers' lives.

A total of 16,447 ha is currently irrigated of the approximately 21,654 ha devoted to agriculture for the subproject, as of 2014. This covers the areas of Nueva Era, Dingras, Solsona, Badoc-Sinait, Pinili, and Batac-Paoay (Refer to **Error! Reference source not found.**). he data presented in **Error! Reference source not found.** and **Error! Reference source not found.** indicates a wide range of crop adaptability on a province – wide basis thus allowing farmers to exercise some degree of choice or decision in the adoption of their cropping pattern. Therefore, the same will be easily implementable in identified project areas considering the climatic and soil requirements and marketability of commodities or crops, production and yield data which have generally shown some encouraging results. Production protocols of indicated crops including their cost and return analysis are available through the municipal and city agriculturists and agricultural technologists for adoption and replication in farmers' production areas.

Municipality	Irrigated (ha)	Rainfed (ha)	Upland (ha)	Total (ha)
Nueva Era	608	364	3	975
Dingras*	6,217	410	98	6,725
Solsona*	3,622	No data	No data	3,622
Badoc-Sinait	1,136	1,250	57	2,443
Pinili	499	1070	No data	1,569
Batac-Paoay	4,365	1,890	65	6,320

Table 1: Area Devoted to Agriculture, 2014

* Dingras and Solsona are under Cura Area

** Badoc includes Madupayas Area

Source: Provincial Agriculture Office, Laoag City, Ilocos Norte

Table 2: Updated	Agricultural Profile,	CY 2014
------------------	-----------------------	---------

Commodity	Area Harvested	Production (mt)	Yield (mt/ha)
Rice	66,681.45	332,079.40	4.98
Corn:			
Yellow	8,511	47,358	5.60
White	3,151	11,295.5	3.60
Fruit Vegetables:			
Ampalaya	349.45	2,988	8.55
Eggplant	728	9,661	13.27
Tomato	1,459	31,326	21.47
Okra	138.50	1,342	9.69
Upo	172	2,194	12.76
Patola	178	1,707	9.58
Leafy Vegetables:			
Pechay	118	1,023	8.65
Legumes:			
Mungbean	4,193	5,810	1.39
Peanut	1,045	1,547	1.48

Source: Provincial Agriculture Office, Laoag City, Province of Ilocos Norte

Listed below are possible social and environmental benefits of the Project:

A. Social Benefits:

- (1) Increased disposable income and savings;
- (2) Active community participation in environmental programs and adoption of sustainable resource management practices;
- (3) Enhanced quality of life due to improved water quality;
- (4) Improved health status of the population as a result of healthier environment;
- (5) Institutionalized stakeholders' participation in all aspects of project planning, implementation and evaluation;
- (6) Mobilized communities demonstrating initiative and supporting all development programs;
- (7) Established institutions and mechanisms for coordination and assistance among development partners to attain plan goals;
- (8) Participation in governance of irrigation system; and
- (9) Strengthened and empowered community based organizations

B. Environmental Benefits

- 1. Enriched biodiversity. Through the watershed rehabilitation and protection program, habitats of flora and fauna shall be rehabilitated and preserved that shall, in turn, ensure long-term ecological balance and biodiversity;
- 2. Improved forest, soil and water conservation. With the application of appropriate conservation measures, forest, soil and water along with other natural resources shall be better protected and conserved, thus ensuring sustainability;
- Shifting cultivation shall be minimized if not prevented with strict implementation of protection measures, thus reducing or preventing the risk or threat to forest areas. Better livelihood outlook is expected;
- 4. Enriched species/biodiversity;
- 5. Improved ecological biodiversity and hydrological productivity and sustainability as a result of rehabilitated watershed using vegetative measures and strategies; and
- 6. Increased community awareness for and concern in environmental protection and biodiversity conservation.

1.3 EXISTING GEOLOGICAL CONDITIONS

In summary, the existing geological condition within the two proposed dam sites will influence the level of safety of the component structures of the project. The geohazard assessment showed these findings;

1) The abutments of Palsiguan and Nueva Era Dams are cut by fault as shown by the drilling during the feasibility study stage of the project.

- 2) The Mines and Geosciences Bureau, PHIVOLCS and N Pinet (1990) have their own version of the geologic / structural map of the area. Based on the 3 maps, it is not clear where the Abra River Fault (a splay of the Philippine Fault) is located vis-à-vis with the location of the 2 dam sites and the tunnel corridor.
- 3) Aside from the Abra River Fault, other faults classified by PHIVOLCS as active are in close proximity to the Nueva Era Dam. These faults need to be reconciled with the faults of the MGB and Pinet.
- 4) A number of lineaments cuts the vicinity of the dam sites and tunnel corridor. The relationship of the faults that cut the abutments of the 2 dams, and the lineaments that cuts the tunnel corridor to the major fault lines identified by PHIVOLCS as active have to be defined
- 5) If the identified active fault in the area moves, what will be the possible direction of movement, extent of movement? Will the fault on the abutments of the dams also move and so with the other lineament? If yes, by how much and what kind of movement?
- 6) The International Commission on Large Dams (ICOLD) recommends that fault lines straddled by dams should be thoroughly studied. In the absence of such study, ICOLD recommends the dam should be relocated. In the case of the Palsiguan and Nueva Era dam sites, where will the relocation site be?
- 7) The headwater of the Bonga River, upstream of Nueva Era dam site is currently undergoing active degradation resulting to massive sediment deposition at the valley floor. Initial volume estimate of debris that can be generated by the degradation is from 2.5 to 8.3 M m3. The storage capacity and effective capacity of Nueva Era dam is 5.73 M m3 and 1.17 M m3 respectively indicating a very short life of the dam.
- 8) Aside from the fault intercepted by the drilling during the feasibility study and the sheer shown in the MGB Regional Geologic map of Banna Quadrangle (Sheet No. 3173-IV), the slope face of the reservoir area of the two dams are bisected by rock discontinuities (e.g. joints, layering, bedding, fractures) which may cause the slope to fail once they day light. Failure may by induced by ground shaking, fluctuation of water level within the reservoir, or increase in hydrostatic pressure.

In spite of the all these, no detailed geological investigation was conducted on the two dam sites and tunnel corridor, nor to address the volume of debris deposited at the valley floor during and after the feasibility study stage of the project.

It should also be stressed at this point, that location of the power plant and other appurtenant structures also warrants a detailed geological study.

Extent of degradation affecting the slope sections at the headwater of Bonga River upstream from the Nueva Era Dam Site.

Photo shows section of the Abra – Ilocos Norte Road at the background showing damage while still under construction due to lateral movement.

Extent of sediment accumulation on the valley floor of Bonga River due to degradation at the headwater

Extent of degradation at the headwater of Bonga River upstream of the Nueva Era Dam Site

Photos taken in August 2019 (left) and April 2019 (right) showing displacement on the tension cracks present at the ridge crest separating llocos Norte from Abra. The Abra – llocos Norte Road at the background showing widening of gaps in the concrete slab joints signs of lateral movement

1.4 PROJECT ALTERNATIVES

In formulating the alternatives for the project, one of the basis should be the result of a detailed geological investigation of the proposed dam sites and tunnel corridor. The massive degradation at the headwater of Bonga River that cause massive siltation due to deposition of slide debris upstream of Nueva Era Dam should be recognized as a direct threat to the life of the dam thus requires direct and unequivocal attention. The cause of the degradation and the possible solution also falls within and will be influenced by the geologic, tectonic and seismic conditions that will affect the two dam sites and tunnel corridor.

Addressing the degradation and its consequential result is not covered by the original Feasibility Study (FS) and said original FS is the basis for this EIA Study.

The coverage of the suggested detailed geological study should include the following;

- 1) Detailed Geological Mapping of the 2 Dam Sites, Debris Impounding Dam Site and Tunnel Corridor including Proposed Dam Relocation Sites if relocation is warranted. The detailed geological survey will be using site specific topographic maps from radar imaging, lidar imaging, and topographic mapping of the study site. The detailed geologic study will provide the following results:
 - Location of the position of Abra River Fault and other active faults in the vicinity vis-àvis the 2 Dam Sites (including the location of possible relocation site if so needed), Tunnel Corridor, and Proposed Debris Impounding Dam
 - Fault Mapping and Characterization to establish the relationship, sense of movement, rate of displacement and direction of movements of the known active faults (primary faults) and lineaments, splays and / or branches (secondary faults).
 - Seismicity / Earthquake magnitude of known near site active faults
 - Site Specific Probabilistic Seismic Hazard Assessment
 - On site georesistivity survey (locate continuity of fault lines / shear zone across valley floor)
 - Trenching and paleo seismicity mapping (if applicable)
- 2) Seismicity study focused on site specific Probabilistic Seismic Hazard Assessment, identification potential earthquake generators, site specific earthquake magnitude, and the resulting Maximum Design Earthquake (MDE), Maximum Credible Earthquake (MCE) and Operational Basis Earthquake (OBE), historical earthquake, site specific seismic coefficients.
- 3) Geotechnical Drilling with required laboratory test following acceptable standards and Evaluation
- 4) Reservoir Slope Stability Analysis with detailed geological mapping, identification of slide zone, and determination of volume of slide materials
- 5) Slope and River Sectioning
- 6) Modeling of the wave that can be generated by land slide within the reservoir
- 7) Modelling of the resultant flood from overtopping of the dam
- 8) Seismic Load on Slopes (Dam Reservoir and Debris Impounding Structure)

- 9) Detailed geological mapping of the degradation zone on the headwater of Bonga River with Georesistivity Survey, Debris Volume Computation, Debris Flow Modelling and Debris Flow Velocity, and River Accretion Modeling
- 10) Detailed Geological Mapping of Service Area using Aerial Photo Interpretation, Quaternary Geological Mapping (Auger Drilling and Lithological Mapping of Deposition Zones identified geomorphic units, groundwater level / depth and Monitoring, Topographic Mapping and Georesistivity Survey
- 11) Option Building and Identification of Project Alternatives based on the results of the Detailed Geological Investigation covering;
 - Site Selection (Dam Relocation Sites, Tunnel Corridor, Power Plant Site and Appurtenant Structures, Debris Impounding Structure)
 - Type of Debris Impounding Structure
 - Dam Options for Nueva Era and or Palsiguan
 - o Tunnel Options including that of the power plant
- 12) Value Engineering/Value Analysis is suggested since the additional study was not considered and undertaken during the feasibility study stage of the project. However, it may be considered under or the main activities for the "Pre-Detailed Engineering Design phase of the project" thus will be a major input in the Detailed Engineering Design Phase.

Value Engineering / Value Analysis (VE/VA) in the selection of the best possible implementation / project options /configurations for the project (including new available technology which can be used to deliver the project or component/s of the project if present), to ensure that the best scheme be selected, which would yield the highest value-for-money (VfM). It is defined by the Society of American Value Engineers International (SAVE International), is the systematic application of recognized techniques by a multidisciplined team that identifies the functions of a product or service; establishes a worth for that function; generates alternatives through the use of creative thinking; and provides the needed functions, reliably at the lowest cost.

VE/VA is a measure implemented by NEDA to subject major projects to ensure that projects/programs achieve full functionality at the most appropriate design and least project cost. This is in pursuit of the Philippine Government for a cost-efficient and cost-effective measures that support fiscal discipline and economic growth.

1.4.1 Comparison Based on Rice Production

The existing situation of ricelands and rice production will be continued in the no project option. Comparing the two alternatives, there will be significant changes in the manner of watering the rice lands as follows:

Table 3: Change in cropping pattern

TYPE OF WATERING SYSTEM	NO. HA	CAV/HA	TOTAL CAV	CHANGE (CAV)		
WET SEASON		•	•			
No Project Alternative (continue exi	isting)					
Rainfed Rice	1,294.00	44.00	56,936.00			
Irrigated Rice (gravity)	110.00	72.00	7,920.00			
Irrigated Rice (pump)	96.00	72.00	6,912.00			
TOTAL			71,768.00			
	With Project Alternative					
Irrigated Rice (project)	1,500.00	90.00	135,000.00			
TOTAL			135,000.00	63,232.00		
DRY SEASON	DRY SEASON					
No Project Alternative (continue exi	isting)					
Irrigated Rice (Gravity)	110.00	76.00	8,360.00			
Irrigated Rice (Pump)	96.00	76.00	7,296.00			
TOTAL			15,656.00			
With Project Alternative						
Irrigated Rice (Project)	1,500.00	100.00	150,000.00			
TOTAL			150,000.00	134,344.00		
				197,576.00		

The no-Project alternative means that 86.2 % of the rice lands in the municipality of Lopez will continue to be have only one cropping per year while the rest of the rice lands with a semblance of an irrigation system will produce rice at a lower rate than that for a fully irrigated systems. This will result in a net opportunity loss of up to 200,000 cav (rounded off) of rice a year which is enough productivity to feed the population of Lopez and its projected population increase for the next 5 to 10 years.

1.4.2 Comparison based on labor requirements

The Project will also cause the use of more farm labor because of the additional cropping. This is explained in detail in the following table.

TYPE OF WATERING SYSTEM	LAND AREA, HA	UNIT EFFORT, PAX-DA/HA	TOTAL EFFORT, PERSON DAYS	CHANGE, PAX-DA	
WET SEASON					
No Project Alternative (continue existing)	No Project Alternative (continue existing)				
Rainfed Rice	1,294.00	68.00	87,992.00		
Irrigated Rice (gravity)	110.00	80.00	8,800.00		
Irrigated Rice (pump)	96.00	80.00	7,680.00		
TOTAL			104,472.00		
With Project Alternative					

Table 4: Labor Requirements

Irrigated Rice (Project)	1,500.00	72.00	108,000.00	
TOTAL			108,000.00	3,528.00
DRY SEASON				
No Project Alternative (continue existing)				
Irrigated Rice (gravity)	110.00	89.00	9,790.00	
Irrigated Rice (pump)	96.00	89.00	8,544.00	
TOTAL			18,334.00	
With Project Alternative				
Irrigated Rice (Project)	1,500.00	85.00		
			127,500.00	
TOTAL				109,166.00
			127,500.00	
				112,694.00

Up to 113,000 person-days of anticipated additional farm labour will not be realized if the project does not push through, which translates to roughly PhP19.325 million in foregone wages if one uses an average of PhP150 paid per person-day for agriculture-based work. Hence, the project will not only contribute to the food security of the region but also increase employment among agricultural workers in the area.

1.4.3 Comparison based on Infrastructure

Without the project, no areas will be inundated, and no new roads will be built at least within the next three years. Currently, the proposed dam site is reachable by a 3 km dirt road from the nearest (newly opened) paved barangay road. There are limited transportation routes into the farms with motorcycles and farm equipment used as vehicles. With the project, gravel roads will be built along the main canal length and along lateral canals and an access road will be built that will allow equipment to reach the dam site from the paved barangay road. Likewise, about 236.6 ha of land will be inundated based on normal reservoir height if the project is finished. The summary is as follows:

DETAILS	WITH THE PROJECT	WITHOUT THE PROJECT
Inundated area for reservoir	236.6 ha will be inundated	No inundation
Dam	height of 16.83 m, crest of 270 m	None, no dam to be constructed
Main Canal	21.02 km	Parts of the canal are already existing, but these will be improved
Gravel roads adjacent to main canal	21.02 km	None
Lateral Canals	23.05 km	None
Gravel roads	23.05 km	None
Access Road to Dam Site	3 km paved	3 km dirt

Table 5: Infrastructure Comparison

1.5 PHYSICAL PROJECT COMPONENTS

INIP-2 is designed as a multipurpose development project which comprises, among others: (i) dam and reservoir and (ii) irrigation and drainage as its major components.

The project involves the construction of a 126.41-meter-high earth and rockfill dam across Palsiguan River, within the municipality of Lagayan, Province of Abra of the Cordillera Autonomous Region. The dam's geographical position is at Latitude 17°49'34.28"N and Longitude 120°43'50.35"E. An approximately 147 million cubic meter (M m³) of water shall be stored in the reservoir for efficient delivery and multipurpose utilization.

A 6.15-km headrace tunnel and a 2.95-km tailrace tunnel shall deliver the aforementioned water requirement from an intake structure to be located at the mid- portion of the reservoir area.

For the power component of the Project, hydropower facilities shall be provided at each outlet of the tunnels, the 14 MW Bonga power station and the 6.8 MW Nueva Era power station, capable of generating annually 82.18 GWh and 39.50 GWh, respectively.

With regards to the irrigation component, the Nueva Era afterbay dam shall serve as the re-regulating structure in the delivery of irrigation water to the 3,572 has of the INIP-1 area: a) Labogaon, b) Solsona, c) Madongan, d) Papa and, e) Nueva Era National Irrigation Systems (NISs), through the 38.395-km Link Canal No. 1.

While the 24.872-km of Link Canals designated as Nos 2 & 3 shall provide irrigation water to the 11,100-ha of the INIP-2 area: a) Batac-Paoay, b) Badoc-Sinait, c) Pinili, d) Madupayas and e) Nueva Era-left bank.

Figure 2: Development Plan of the Ilocos Norte Irrigation Project – Stage II

Table 6: Major Project Components and Features

PROJECT COMPONENTS	FEATURES
Palsiguan Dam	
Site location	17°49'34.28"N, 120°43'50.35"E
Catchment Area	153.00 km ²
Dam Type	earth and rockfill dam
Dam Height	126.41 m
Total Capacity	147 M m ³
Embankment Volume	9,100,000.00 cu.m.
Spillway Capacity	3,070.00 m ³ /sec
Diversion Works	
Tunnel Length	740.00 m
Discharge	950.00 m³/sec
Headrace Tunnel	
Site location (intake)	17°53'5.07"N, 120°41'10.82"E
Length	2,950.00 m
Capacity	28.225 m³/ sec
Nueva Era Afterbay Dam	
Site location	17°53'30.15"N, 120°39'48.20"E
Dam Type	Concrete dam
Dam Height	45.50 m
Storage Capacity	5.73 M m ³
Effective Capacity	1.17 M m ³
Hydropower Plants	
Installed Capacity	
Bonga Station	14,000 KW
Nueva Era Station	6,800 KW
Annual Energy Production	
Bonga Station	82.18 GWh
Nueva Era Station	39.50 GWh
Irrigable Service Area	
Nueva Era area (left bank)	670 ha
Madupayas area	160 ha
Batac-Paoay area	5,190 ha
Pinili area	1,400 ha
Badoc-Sinait area	2,270 ha
Sub-total (INIP-2 area)	11,1000 ha
Sub-total (INIP-1 area)	3,572 ha
TOTAL SERVICE AREA	14,672 ha

1.5.1 Dam and Appurtenant Structures

The proposed dam is envisioned to be constructed across the Palsiguan River in the municipality of Lagayan in the province of Abra having geographical coordinates of 17° 49' 34" N and 120° 43' 50.50" E. The dam would be of the earth and rock-fill type, about 143.50-m high, 480.00-m long and 10-m wide crest. The upstream and downstream embankment slopes would be 2.8:1 and 1.9:1, respectively.

Dam Height

The damsite is located in the municipality of Lagayan, province of Abra. The height of dam depends on the topography of the area and the reservoir volume that adequately satisfy the intended needs of the Project. A freeboard will be added to the height of the dam to take care of the rise in the reservoir water due to wave action, etc.

Freeboard and Crest Elevation of Dam. Freeboard is the difference between the crest elevation and the full water surface level in a reservoir. Freeboard should be greater than or equal to the sum of the surcharge height, height of wave due to wind, height of wave due to earthquake and contingency height. The surcharge height is taken as the corresponding height of the peak inflow of the design flood. Height of wave due to wind was derived from factors such as fetch and wind speed. The Molitor-Stevenson formula was used to determine the height of wave due to wind. Since uprushing height varies considerably with embankment slope and roughness of slope, height of significant wave should be adjusted adequately.

The dam crest elevation was obtained by adding the freeboard and full water surface. The crest will be used as maintenance road so an additional height is included. The Dam Crest Elevation was set at elevation 329.50 masl.

Axis Alignment

The dam would be across Palsiguan River in the municipality of Lagayan in the province of Abra. The abutments along the selected axis and in the immediate riverbed vicinity have steep slope banks. The ground contours almost parallel to the river alignment without major morphological variations.

Dam Embankment

For the dam structure to attain the requisite degree of imperviousness, the mid-section or central core would be composed of clayey materials. A downstream sand and gravel filter drain would be placed directly adjacent to the clayey central core with its horizontal segment extending up to the boulder toe drain.

To provide additional structural stability and more protection to the impervious zone, an outer shell composed of rocks and boulders will be provided. These materials are readily available within the project area.

Foundation

The area under the dam body is stripped to a minimum depth of 1.0 m and to a depth where organic materials are present. The dam foundation excavation lines in particular under the core trench is essentially up to the sound rock strata. The depth of inferred sound rock strata is about 14 m. Overburden materials are stiff to very dense transported and residual soil.

Excavation Level

The level down to which it will be necessary to carry the foundation excavation for each of the sections of the dam will vary according to the position of the rock strata and state of weathering.

Fully weathered layers will have to be removed from the foundation areas since these are mechanically weak and potentially semi-pervious. The final excavation levels would be determined upon visual inspection during excavation at construction time.

The sound, defined as the hard rock limiting surface for mechanical excavation, must be reached. The sound rock once exposed will have to be cleaned by hand excavation and air and water jets. The main purpose of the cleaning is to remove the filling from the joints especially from those joints crossing the axis at angles 90 degrees.

Cofferdam

The river waters will be diverted into the diversion conduit by means of cofferdam. The cofferdam embankment will consist of a homogenous material with slopes 2.8:1 on the upstream side and on the downstream side the slope is 1.9:1. The cofferdam will be incorporated into the main dam body.

It is anticipated that part of the embankment materials would come from the dam and spillway excavations. The cofferdam will divert river's low water flow and the 10-yr inflow design flood into the diversion conduit.

Spillway

Various combinations of flood storage and spillway lengths and capacities were investigated. These investigations required flood routings, spillway layouts and estimates. An un-gated structure was chosen for its ability to function under the least maintenance cost- and troublefree operation.

The hydraulic size and outflow characteristics of the spillway were determined by routing the inflow design flood with a return period of 200 years. The specific dimensions for the spillway were developed considering the topography and foundation conditions.

The ungated spillway that is made of class "A" reinforced concrete has an ogee type weir having a crest length of 75 m and crest at elevation 317.60 m and is located on the right abutment. This is designed to safely permit the passage of the routed maximum flood. The spillway is so aligned in order that it would discharge directly to the river streambed. The inclined chute will terminate with a Type II stilling basin having a width of 75 m and a length of 40 m. The high-water velocities and large pressures would need to be controlled to avoid detrimental scour, erosion or damage to adjacent structures. Construction of the spillway would require a deep cut excavation and the large volume of excavation would be used for the dam embankment.

Diversion during Construction

The selection of the size and number of diversion conduit is dependent on the height of the cofferdam, i.e., size of the diversion conduit is inversely proportional to the adopted design head. Several dimensions and combinations have been tried that aim to minimize or optimize the overall cost of the diversion works as well as the constraints on implementation methods and schedule.

To divert river flows during construction, two barrels of concrete conduit having a dimension of 5 m each will be constructed. The diversion conduit in combination with the planned cofferdam would protect civil works construction structures and equipment against the 10-year flood frequency.

Dam Instrumentation

To monitor the condition of the dam, an extensive package of instruments will be installed in the dam body during construction. These would monitor settlements, deformation, pore

pressures and total loads or pressure within the various elements of the structures. The instrumentation package would include piezometers, inclinometers, internal movement and strain gauges, total pressure cells, settlement gauges and surface monuments.

1.5.1.1.Nueva Era Dam

The proposed afterbay dam is envisioned to be constructed across the Bonga River in the municipality of Nueva Era in the province of Ilocos Norte having geographical coordinates of 17° 53' 20.21" N and 120° 39' 49.59" E. The dam location is about 1.50 km south of Nueva Era town in aerial distance. The dam would be of the concrete gravity type, about 45 m high from the riverbed.

Axis Alignment

The dam is located in the municipality of Nueva Era, Ilocos Norte. The abutments along the selected axis and in the immediate riverbed vicinity have moderate slope banks. The ground contours almost parallel to the river alignment without major morphological variations.

Concrete Gravity Dam

The gravity dam would have an overflow section serving as the spillway and a non-overflow section. The ogee in the overflow section would be 45.00 m above the streambed and this is at elevation 186.82 masl. The top of the dam of the bridge deck is at elevation 193.82 masl. From the top of the ogee to the bottom of the bridge deck girder has a clear height of 7 m. The length of dam crest is about 213 m. The total width of the dam at bed rock from heel to toe is around 77 m. In the central portion of the dam is the spillway with a total clear width of 60.00 m. The spillway would consist of 5 bays having a clear span of 12.00 m and each bay would have 1.50 m thick reinforced concrete piers.

The usual instrumentation of the concrete dam is the observation of level of seepage that may occur either through the foundation grout curtain, through the interface between the foundation surface and the concrete or through the concrete in between lifts. These can be monitored by installing PVC standpipes from the concerned area as mentioned then will exit to the drainage gallery, where seepage or water level inside the standpipe can be monitored.

Foundation

The area under the dam body is stripped to a minimum depth of 1.0 meter and to a depth where organic materials are present. The dam foundation excavation lines are essentially up to the sound rock strata. The inferred sound rock strata have been assumed to be 14.5 m in depth. Overburden materials are stiff to very dense transported and residual soil.

Excavation Level

The level down to which it will be necessary to carry the foundation excavation for each of the sections of the dam will vary according to the position of the rock strata and state of weathering.

Fully weathered layers will have to be removed from the foundation areas since these are mechanically weak and potentially semi-pervious. The final excavation levels would be determined upon visual inspection during excavation at construction time.

The sound, defined as the hard rock limiting surface for mechanical excavation, must be reached. The sound rock once exposed will have to be cleaned by hand excavation and air and water jets. The main purpose of the cleaning is to remove the filling from the joints especially from those joints crossing the axis at angles 90 degrees.

Reservoir

In a multipurpose river project, clearing of the reservoir is essential to its operation. Prevailing winds and watershed flow conditions move trees, logs and other debris to the shoreline and outlets of the reservoir. Under extreme flood conditions with high flows passing through the spillway, large trees and other floating debris could plug the spillway to a certain degree, thereby reducing the spillway outflows to a point of endangering the safety of the dam. In this respect, the project plans anticipate the removal of all trees, brushes and other structures below the top of the maximum water surface elevation of 192.27 m down to 2 m below the minimum reservoir water surface level of 167.18 m.

1.5.2. Hydropower

1.5.2.1.Palsiguan

This development complex starts from the 139.5-meter-high Palsiguan Dam to be built across the Palsiguan River with a storage capacity of about 189 M m³ for both irrigation and power generation. This capacity in combination with proper reservoir operation as required for irrigation will make available a daily discharge of about 13.64 m³/sec. Drainage area at the damsite is about 153 km² of forest land that catches a mean actual rainfall of 2,600 mm.

Runoff from this rainfall will be transported through a trans-basin tunnel about 6,150 m long and 2.6 m in diameter into the next component of the development where it will end up in an underground surge shaft. From the surge shaft, water will be conducted into the penstock that slopes toward the underground powerplant, the Bonga River HE Plant.

1.5.2.2.Bonga River Hydro-Electric Plant

The Bonga river hydropower plant will receive the 13.64 CMS from Palsiguan Dam and in combination with a rated effective head of about 149.3 m will generate a capacity of 36,000 kW and an annual energy of about 159.66 GWH. The Powerplant will be about 70 m underground where the only access to the plant will be a shaft directly above the powerhouse.

From the powerplant, water will again be conducted though a tailrace tunnel about 2,950 m long whose diameter is to be a little bit larger to allow for a free-flowing conduit. This tailrace tunnel will end up into the reservoir of the Nueva Era Dam.

1.5.2.3.Nueva Era

The Nueva Era Dam will take advantage of the 13.64 CMS Palsiguan Dam yield after generating at the Bonga Hydropower Plant. Adding its own yield of 4.37 CMS, an equivalent total daily flow of 18.01 CMS will be made available.

Capacity of the Nueva Era powerplant however, will be measured from the maximum requirement for irrigation which is 29.273 m³/sec and together with an effective head of about 27.92 m will result in a capacity of 6,800 kW. This capacity will generate an annual energy of 39.54 GWh

The total capacity of the Palsiguan-Bonga-Nueva Era Complex will therefore be 42,800kW with a total energy generation of about 199.2 GWh.

The hydropower plant will be located directly at the foot of the concrete gravity Nueva Era dam which will have a height of about 45.50 m and a crest length of about 220 m.

1.5.3. Irrigation and Drainage

1.5.3.1. Irrigation Canals

Objective Canals

The service area of the Project was 3,576.00 and 11,100.00 ha for the total of 14,676.00 ha for Link Canal 1 and Link Canal 2 & 3 and applied unit water demand (design waterduty) for the design of canals is 1.84 li/sec-ha, and 1.76 li/sec-ha, respectively. The irrigation works of canal sections and its details of canal works are presented in Table.

Table 7: List of Designed Irrigation Canals

CANAL	STATIONING	ТҮРЕ	LENGTH	REMARKS
Link Canal 1	0+000.00	38+395.38	38.861	Proposed Lined
			km.	Canal
Link Canal 2 & 3	0+000.00	24+872.00	24.872	Proposed Lined
			km.	Canal

Canal Type

The proposed Lined Canal consists of (3) types to suit the present condition of the project area. Type I is a Rectangular Lined Section of 20 cm. thick reinforced concrete, Class "B" (f'c = 170 kg/cm²) with 12 mm diameter RSB, spaced at 150 mm both ways. This type is applied to Link Canal 1 and Link Canal 2 & 3 and provided with (300 mm x 150 mm) concrete stiffeners spaced for every 5.00 m. interval. Type II is a Rectangular Lined Section of 15 cm. and 10 cm. thick reinforced concrete, Class "B" (f'c = 170 kg/cm² with 12 mm diameter RSB, spaced at 150 mm both ways. This type is applied to Main Canals with the height (H) is more than 1.00 m. and provided with (300 mm x 150 mm.) concrete stiffeners spaced for every 5.00 m. interval. Type III is a Rectangular Lined Section of 10 mm thick reinforced concrete, Class "B" (f'c = 170 kg/cm² with 12 mm diameter RSB, spaced at 150 mm both ways. This type is applied to Main Canals with the height (H) is more than 1.00 m. and provided with (300 mm x 150 mm.) concrete stiffeners spaced for every 5.00 m. interval. Type III is a Rectangular Lined Section of 10 mm thick reinforced concrete, Class " B " (f'c = 170 kg/cm²) with 10 mm diameter RSB, spaced at 300 mm both ways. This type is applied to Main Canals and Lateral Canals with the height (H) is less than 1.00 m and provided with (200 mm x 150 mm) concrete stiffeners spaced for every 5.00 m interval.

Figure 3: Typical Canal Section

Design discharge and hydraulic calculations design discharge of each canal section is simply calculated based on the irrigation command area and unit diversion discharge as practiced by the Irrigation Management Office (IMO).

The hydraulic calculations were computed following the NIA guidelines and criteria for hydraulic canal elements manning's formula was considered as stated below.

$$V = \frac{1}{n} (R^{2/3}) (S^{1/2})$$

Where:

V = mean velocity of flow in canal, m/s

- n = Manning's roughness coefficient
- R = hydraulic radius
- S = hydraulic gradient

For roughness coefficient *n* a value of 0.018 was considered for concrete lining for hydraulic gradient *S* the slope of canal was based on the field condition. In case the computed velocity is more the maximum or less than the maximum or less than the maximum; the hydraulic gradient may be adjusted to meet the permissible velocity. Maximum permissible velocity of 2.00 m/s and minimum permissible velocity is 0.30 m/s were adopted. For calculation the hydraulic radius *R*, cross-sectional area *A* and wetted perimeter *P* were computed using the formula *A*/*P* considering the ratio of b = d and canal side slope 0:1 for Rectangular Lined Canal were adopted. Criteria of flow depth *d* up to 2.00 m. was also considered, however maximum computed " d " for this Project is more than 2.00 m. Freeboard, FB = 0.25d + 0.30 m. for depths of flow more than 2.00 m.

Table 8: Hydraulic Design of Canal Elements Link Canal 1

		DISTANCE	Q	v	Α	b	d	D	R	Р	S	SS	n
FROM	то	DISTANCE	m³/sec	m/s	m²	m	m	m	m	m		(H:1)	
0+000.00	0+577.30	577.30	0.0000	0.795	8.280	4.10	2.02	2.80	1.017	8.139	0.00020	0	0.018
0+577.30	0+740.00	Closed Condu	it (1-1.60	m. x 1.4	0 mExist	ing)							
0+740.00	0+930.00	190.00	0.0000	0.795	8.280	4.10	2.02	2.80	1.017	8.139	0.00020	0	0.018
0+930.00	1+075.00	Closed Condu	it (1-1.60	m. x 1.4	0 mExist	ing)						-	
1+075.00	1+140.00	65.00	0.0000	0.795	8.280	4.10	2.02	2.80	1.017	8.139	0.00020	0	0.018
	1+140.00	Comb. Road x	-ing,Chec	k and He	adgate of	Nueva E	ra M.C. (Existing)				-	
1+140.00	1+285.00	145.00	0.0000	0.787	8.032	4.00	2.01	2.80	1.002	8.016	0.00020	0	0.018
1 205 00	1+285.00	Road x-ing (E	xisting)	0 707	0.000	4.00	0.04	2.00	1 000	0.010	0.00000	-	0.010
1+285.00	1+600.00	315.00	0.0000	0.787	8.032	4.00	2.01	2.80	1.002	8.016	0.00020	0	0.018
1.000.00	1+600.00			0 707	0.022	4.00	2.01	2.00	1 002	0.010	0.00000	0	0.010
1+600.00	2+270.00	670.00 Chock Structu	0.0000	0.787	8.032	4.00 #EP/S	2.01	2.80	1.002	8.016	0.00020	0	0.018
2, 270.00	2+270.00			0. # 3 , 4	2 071	J. # 5 K/ 3	1.00	2.00	0.000	7 096	0 00020	0	0.010
2+270.00	2+940.00	Check Structu	ro with T	$\frac{0.785}{0.771}$	7.971	4.00	1.99	2.80	0.998	7.980	0.00020	0	0.018
2+940.00	2+340.00	490.00		0. # 7 L/.	7 0 2 7	4.00	1 0 9	2 80	0.005	7 964	0.00020	0	0.018
2+940.00	3+430.00	Road x-ing	0.0000	0.785	1.921	4.00	1.98	2.60	0.995	7.904	0.00020	0	0.018
3+/30.00	1+7/3 00	1313.00	0 0000	0 783	7 9 2 7	4.00	1 98	2.80	0 995	7 96/	0 00020	0	0.018
31430.00	4+743.00	Road x-ing wit	h Check	0.785	1.521	4.00	1.50	2.00	0.555	7.504	0.00020	0	0.010
4+743.00	5+188.00	445.00	0.0000	0 783	7 908	4 00	1 98	2.80	0 994	7 954	0.00020	0	0.018
41745.00	5+188.00	Road x-ing	0.0000	0.705	7.500	4.00	1.50	2.00	0.554	7.554	0.00020	0	0.010
5+188.00	5+632.00	444.00	0.0000	0.783	7,908	4.00	1.98	2.80	0.994	7.954	0.00020	0	0.018
0.100.00	5+632.00	Road x-ing wit	th Check	01700	11500		1.00	2.00	0.00	,	0.00020	Ŭ	0.010
5+632.00	6+000.00	368.00	0.0000	0.781	7.857	4.00	1.96	2.75	0.991	7.928	0.00020	0	0.018
	6+000.00	Check Structu	re with T.	O. # 16 L	/S			_					
6+000.00	7+700.00	1700.00	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	7+700.00	Road x-ing											
7+700.00	8+300.00	600.00	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	8+300.00	Inclined Drop									1		
8+300.00	8+656.54	356.54	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	8+656.54	Road x-ing wit	th Drop										
8+656.54	10+385.23	1728.69	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	10+385.23	Road x-ing											
10+385.23	10+697.26	312.03	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	10+697.26	Road x-ing											
10+697.26	10+968.93	271.67	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	10+968.93	Road x-ing				-	-	-					-
10+968.93	11+192.27	223.34	0.0000	0.780	7.838	4.00	1.96	2.75	0.990	7.919	0.00020	0	0.018
	11+192.27	Road x-ing wit	th Check 8	\$ T.O. # 1	17 L/S to s	erve Pap	a Left Ma	in Canal				-	
11+192.27	11+395.66	203.39	0.0000	0.759	7.214	3.80	1.90	2.65	0.950	7.597	0.00020	0	0.018
11+395.00	11+5/6./5			at iniet		2 00	1.00	265	0.050	7 5 0 7	0.00020	0	0.019
11+5/0./5	12+129.57	552.62 Check Structu	re with T	0.759	7.214 /S to serv	e Pana Ri	1.90 ight Main	Canal	0.950	7.597	0.00020	0	0.018
12+120 57	12+123.57	313 0/		0. # 10 L	6 688	2 70	1 81	2 55	0.01/	7 3 1 5	0.00020	0	0.018
12,125.57	12+443.51	Road x-ing	0.0000	0.740	0.000	5.70	1.01	2.55	0.514	7.515	0.00020	0	0.010
12+443.51	12+481.69	38.18	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.00020	0	0.018
	12+481.69	Road x-ing										2	
12+481.6	12+955.09	473.40	0 0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
9		17 3.40	0.0000			-	-				0	-	
	12+955.09	Road x-ing											
12+955 0	13+379.80	474 71	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
9	13.375.00	12 1.7 1	0.0000				_				0	-	
	13+379.80	Road x-ing											
13+379.8	13+785 17	405.37	0 0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
131373.0	131703.17	403.37	0.0000								0	-	
	13+785 17	Road x-ing	1	1	1	1	1	1	1		1		
13+785 1	14+541 17	756.00	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
7	1	, 30.00	0.0000								0	-	
, ,	14+541 17	Road x-ing	1	1	1	1	1	1	1		1		
14+541 1	15+089 45	548.28	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
7	10.000.40	570.20	0.0000								0	-	
,	15+089.45	Road x-ing	1	1	1	1	1	1	1	1	1		1
15+089 /	15+850 00	760 55	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
5,000,4	13:000.00	, 00.55	0.0000								0	-	
	15+850.00	Road x-ing	1	1	1	1	1	1	1	1	1		1
15+850.0	16+257.88	407.88	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
			0.0000			-	1		1				-

			Q	V	Α	b	d	D	R	Р	S	SS	n
FROM	то	DISTANCE	m³/sec	m/s	m²	m	m	m	m	m		(H:1)	
0											0		
	16+257.88	Road x-ing			1				l		1		
16+257.8	17+868.96	1611.08	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
8											0		
	17+868.96	Road x-ing									11		
17+868.9	18+359.83	490.87	0.0000	0.740	6.688	3.70	1.81	2.55	0.914	7.315	0.0002	0	0.018
6											0		
	18+359.83	Check Structu	ire with T	.0. # 19	L/S to se	rve Mad	ongan Le	ft Main (Canal				
18+359.8	18+983.45	623.62	0.0000	0.663	4.797	3.10	1.55	2.20	0.774	6.195	0.0002	0	0.018
3											0		
18+983.4	19+375.00	Siphon											
5													
19+375.0	19+635.93	260.93	0.0000	0.663	4.797	3.10	1.55	2.20	0.774	6.195	0.0002	0	0.018
0											0		
	19+635.93	Check Structu	ire with T	.0. # 20	L/S to se	rve Mad	ongan Ri	ght Main	Canal				
19+635.9	19+672.16	36.23	0.0000	0.663	4.797	3.10	1.55	2.20	0.774	6.195	0.0002	0	0.018
3											0		
	19+672.16	Road x-ing											
19+672.1	20+089.98	417.82	0.0000	0.646	4.453	3.00	1.48	2.10	0.746	5.969	0.0002	0	0.018
6											0		
	20+089.98	Road x-ing											
20+089.9	24+612.03	4522.05	0.0000	0.646	4.453	3.00	1.48	2.10	0.746	5.969	0.0002	0	0.018
8											0		
	24+612.03	Road x-ing											
24+612.0	34+888.59	10276.5	0.0000	0.646	4.453	3.00	1.48	2.10	0.746	5.969	0.0002	0	0.018
3		6									0		
	34+888.59	Road x-ing											
34+888.5	35+056.75	168.16	0.0000	0.646	4.453	3.00	1.48	2.10	0.746	5.969	0.0002	0	0.018
9											0		
	35+056.75	Check Structu	ire with T	.0. # 21	L/S to se	rve Solsc	na Left N	Main Can	al		0.0000		0.010
35+056.7	35+465.04	408.29	0.0000	0.603	1.969	2.00	0.98	1.40	0.496	3.969	0.0003	0	0.018
5											ů		
35+465.0	35+719.03	Siphon with R	load x-ing	g at Inlet	& Outlet	Transitio	on						
4				0.000	1.000	2.00	0.00	1.40	0.400	2.000	0.0000	0	0.010
35+719.0	35+741.95	22.92	0.0000	0.603	1.969	2.00	0.98	1.40	0.496	3.969	0.0003	0	0.018
3							<u>.</u>						
	35+741.95	Check Structu	ire with T	.0. # 22	L/S to se	rve Solso	na Right	Main Ca	nal	2 724	0.0002	0	0.019
35+741.9	36+000.00	258.05	0.0000	0.578	1.755	1.90	0.91	1.30	0.465	3.724	0.0003	0	0.018
5	26,000.00	Deadly in t									1		
26,000.0	30+000.00	KOad X-Ing	0.0000	0 578	1 722	1 90	0 01	1 30	0.465	3 721	0 0003	0	0.018
36+000.0	36+464.16	464.16	0.0000	0.378	1.735	1.90	0.91	1.50	0.405	5.724	0.0003	0	0.010
0	26.464.46	Deed in a											
261464.1	36+464.16	FOR SA	0.0000	0 578	1 733	1 90	0.91	1 30	0.465	3 72/	0 0003	0	0.018
36+464.1	37+000.00	535.84	0.0000	0.578	1.755	1.90	0.91	1.50	0.405	5.724	0.0003	0	0.018
6	27,000.00	Pood v ing							I				
27+000 0	27+112 21	1/12 21	0.0000	0 578	1 733	1 90	0 91	1 30	0.465	3 724	0 0003	0	0.018
37+000.0	57+445.31	443.31	0.0000	0.578	1.735	1.50	0.91	1.30	0.405	5.724	0.0003	0	0.010
0	27-442-24	Pood v ing							I				
27 4 4 2 2	37+443.31	241 70	0.0000	0 578	1 733	1 90	0 91	1 30	0.465	3 724	0 0003	0	0.018
3/7443.3	3/7/83.01	541.70	0.0000	0.570	1.755	1.50	0.51	1.50	0.405	5.727	0	5	0.010
	37+795 01	Road v-ing			l			I	l				
27+705 0	2012/0E 20	610 27	0.0000	0.578	1,733	1,90	0.91	1.30	0.465	3,724	0.0003	0	0.018
377703.0	507555.38	010.57	0.0000	0.070		2.50	0.01	2.50	0.100	J., E I	0	5	0.010
	20120E 20	Throchor y in	a with Ch	ock to co		acon Ma	in Canal		l				
	207333.30	THESHELX-III	5 WILLI CH	CUL LO SE	Lange Lange	Baonivia	uu Calidi						

Link Canal 2 and 3

LINK CANAL 2 & 3 Q m³/sec V Α b d D R Р SS s n DISTANCE FROM то m² (H:1) m/s m m m m m 0+000.00 0+300.00 300.00 0.0000 1.834 10.654 4.60 2.32 3.25 1.154 9.232 0.00090 0 0.018 0+300.00 0+900.00 Closed Conduit 0.018 0+900.00 1+000.00 100.00 0.0000 1.834 10.654 4.60 2.32 3.25 1.154 9.232 0.00090 0 1+000.00 Comb. Thr. X-ing Check & Headgate of Lateral 1 1.828 10.549 1+000.00 1+658.00 658.00 0.0000 4.60 2.29 3.20 1.148 9.187 0.00090 0 0.018 1+658.00 Comb. Road x-ing with Check Drop and T.O. # 2 L/S 1+800.00 142.00 0.0000 1.826 10 1+658.00 1+800.00 1.826 10.528 4.60 2.29 3.20 1.147 9.177 0.00090 0 0.018

4.000.00	1+80	0.00	Inlet of (Chute Struct	ture		5 700		260	2.60	4.2	0	00	0.640	5 404	0.04.000			04.0
1+800.00	2+40		600. Outlet o	.00 fChute Stru	0.0	000	5.709	3.	368	2.60	1.3	0 1.	80	0.649	5.191	0.01880	0	0.	018
2+400.00	3+47	0.00	870.	.00	0.0	000	1.826	10.	.528	4.60	2.2	9 3.	20	1.147	9.177	0.00090	0	0.	018
	3+47	0.00	Road x-i	ng															
3+470.00	3+49	5.00	25.0	00	0.0	000	1.826	10.	.528	4.60	2.2	9 3.	20	1.147	9.177	0.00090	0	0.	018
2 405 00	3+49	5.00	Road x-i	ng	0.0	000	1 976	10	E 20	4.60	2.2	0 2	20	1 1 1 7	0 177	0.00000			019
5+495.00	3+94	1.00	Comb. R	.00 oad x-ing . (Check 8	k Heade	ate of Late	eral 2	.520	4.00	2.2	.9 5.	20	1.147	9.177	0.00090		0.	018
3+941.00	5+23	8.00	1297	.00	0.0	000	1.816	10.	.343	4.60	2.2	5 3.	15	1.137	9.097	0.00090	0	0.	018
	5+23	8.00	Road x-i	ng															
5+238.00	6+08	9.00	851.	.00	0.0	000	1.816	10.	.343	4.60	2.2	.5 3.	15	1.137	9.097	0.00090	0	0.	018
6±080.00	6+08	9.00	Road x-II	ng	0.0	000	1 816	10	2/12	4.60	2.2	5 2	15	1 1 2 7	0.007	0.00000	0		018
0+085.00	6+42	6.00	Road x-i	ng with Che	ck & T.(D. # 5 L/	'S	10.	.545	4.00	2.2		15	1.157	9.097	0.00090	0	0.	018
6+426.00	6+50	0.00	74.0	00	0.0	000	1.814	10.	.317	4.60	2.2	4 3.	15	1.136	9.085	0.00090	0	0.	018
	6+50	0.00	Road x-i	ng															
6+500.00	6+85	0.00	350.	.00	0.0	000	1.814	10.	.317	4.60	2.2	4 3.	15	1.136	9.085	0.00090	0	0.	018
6+850.00	0+85 7+35	0.00	500	.0ad x-ing , 0 .00	спеск, 00	1.0.#6	1 806	10gate 0	01 Late 184	rai 3	2.2	1 3	10	1 1 2 8	9 028	0 00090	0	0	018
01050.00	7+35	0.00	Check St	ructure wit	h T.O. #	ŧ 7 L/S	1.000	10.	.104	4.00	2.2	.1 5.	10	1.120	5.020	0.00050		0.	010
7+350.00	7+70	0.00	350.	.00	0.0	000	1.806	10.	.171	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
	7+70	0.00	Inlet of (Chute Struct	ture							-					-		
7+700.00	8+40	0.00	700.	.00 fChuto Stru	0.0	000	6.132	2.9	995	2.40	1.2	5 1.	75	0.612	4.896	0.02346	0	0.	018
8+400.00	8+50	0.00	100	00	0.0	000	1 806	10	171	4 50	2.2	6 3	15	1 128	9 020	0 00090	0	0	018
0.100100	8+50	0.00	Threshe	r x-ing with	Check	& T.O. #	# 8 L/S & T.	O. # 9 F	R/S			.0 0.	10	1.120	5.020	0.00050			010
8+500.00	10+10	00.00	1600	.00	0.0	000	1.806	10.	.171	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
10,100,00	10+10	00.00	Threshe	r x-ing with	Drop		1.000	10	474	4.50		c b	45	4 4 2 0	0.020	0.00000			010
10+100.00	10+50	00.00	400. Inlet of (.00 Chute Struct	0.0	000	1.806	10.	.1/1	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
10+500.00	11+20	00.00	700.	.00	0.0	000	5.777	3.:	179	2.50	1.2	7 1.	80	0.630	5.043	0.02001	0	0.	018
	11+20	00.00	Outlet o	fChute Stru	cture														
11+200.00	11+30	00.00	100.	.00	0.0	000	1.806	10.	.171	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
11, 200,00	11+30	00.00	Threshe	r x-ing with	Incline	d Drop	1 900	10	171	4 50	2.2	C 2	1 -	1 1 2 0	0.020	0.00000			019
11+300.00	11+60	00.00	Juclined	Dron	0.0	000	1.800	10.	.1/1	4.50	2.2	.0 3.	15	1.128	9.020	0.00090	0	0.	018
11+600.00	12+10	00.00	500.	.00	0.0	000	1.806	10.	.171	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
	12+10	00.00	Inclined	Drop															
12+100.00	12+80	50.00	760.	.00	0.0	000	1.806	10.	.171	4.50	2.2	6 3.	15	1.128	9.020	0.00090	0	0.	018
12,960	12+8	12	niet of E	1EVated Flu	nme o	0.00		412	7.6	11 2	2 00	1.05	b 70			002 0	0010		0.019
12+800	0.00	12+	014.00	154.0			200 Z	.415	7.0	11 3	3.90	1.95	2.70	0.5	//5 /.	803 (.00195	, 0	0.018
12.01/	1 00	13+	200.00					000	10.1	74 /	1 50	2.20	2.45	1 1	20 0	020 0	00000		0.010
13+012	1.00	14+	200.00	1186.U	<u>)</u> 0		1 000	.806	10.1	4	1.50	2.26	3.15	1.1	.28 9.	020 0	1.00090) 0	0.018
14.200		14+	200.00	Inlet of El	evated		e a	CFC	6.0	12 2	07.0	1 07	2.00		20 7	427 0	00252		0.010
14+200	0.00	14+	319.00	119.0	0	0.00	JUU 2	.656	6.9	13 3	3.70	1.87	2.60	0.9	130 7.	437 (0.00252	0	0.018
14.210	0.00	14+	319.00	Outlet Ele	evated	Fiume	200 1	000	10.1	74 /	1 50	2.20	2.45	1 1	20 0	020 0	00000		0.010
14+315	9.00	14+	500.00	181.0		0.00		.806	10.1	4	1.50	2.26	3.15	1.1	.28 9.	020 0	.00090) 0	0.018
44.50		14+	500.00	Inresner	x-ing v		еск Огор	& 1.0.	#101	./5		2.20	2.45		20 0	000			0.010
14+500	0.00	14+	900.00	400.0	0	0.00		.806	10.1	/1 4	1.50	2.26	3.15	1.1	.28 9.	020 0	1.00090) 0	0.018
		14+	900.00	Check Dro	op witr	11.0.1	# 11 L/S &	ι 1.0. Ι	# 12 K	/5			0.45		22 0	070			0.010
14+900	0.00	15+	910.00	1010.0		0.00	000 1	.800	10.0	0/8 4	1.50	2.24	3.15	1.1	.22 8.	979 (0.00090) ()	0.018
		15+	910.00	Road x-in	g with	Drop												<u> </u>	
15+910).00	16+	100.00	190.0	0	0.00	000 1	.800	10.0	078 4	1.50	2.24	3.15	1.1	.22 8.	979 (0.00090) ()	0.018
		16+	100.00	Inclined D	prop w	ith Che	eck and T.	0. # 1	3 R/S	& T.O.	# 14	L/S							
16+100	00.0	16+	800.00	700.0	U	0.00	1 000	.798	10.0	151 4	1.50	2.23	3.10	1.1	.21 8.	967 (.00090	<u>, 0</u>	0.018
		16+	800.00	Inclined D	prop			767				0.05	- ·			0.0-	001-	+	0
16+800	00.0	17+	600.00	800.0	U	0.00	1 000	.798	10.0	151 4	4.50	2.23	3.10	1.1	.21 8.	967 (0.00090) 0	0.018
		17+	600.00	Inresher	x-ing													+	
17+600	J.00	18+	500.00	900.0	U	0.00	00 1	.798	10.0	151 4	4.50	2.23	3.10	1.1	.21 8.	967 (0.00090) O	0.018
		18+	500.00	Comb. Th	resher	x-ing	with Cheo	ск and	Head	gate of	r Mai	n Cana	31						
				1															
18+500	0.00	18+	530.00	30.00)	0.00	000 1	.641	7.6	40 3	3.90	1.96	2.75	0.9	77 7.	818 (.00090) 0	0.018
		18+	530.00	Inlet of El	evated	Flum	e												
18+530	0.00	18+	670.00	140.0	0	0.00	000 2	.271	5.5	22 3	3.30	1.67	2.35	0.8	31 6.	646 0	0.00214	1 0	0.018
		18+	670.00	Outlet of	Elevat	ed Flui	me						-					_	
18+670	0.00	19+	850.00	1180.0	00	0.00	000 1	.641	7.6	40 3	3.90	1.96	2.75	0.9	77 7.	818 (0.00090) ()	0.018
		19+	850.00	Thresher	x-ing								-					_	-
19+850	0.00	21+	033.00	1183.0	00	0.00	000 1	.641	7.6	40 3	3.90	1.96	2.75	0.9	77 7.	818 0	.00090) ()	0.018
		21+	033.00	Road x-in	g														
21+033	3.00	21+	220.00	187.0	0	0.00	000 1	.641	7.6	40 3	3.90	1.96	2.75	0.9	77 7.	818 (.00090) ()	0.018
		21+	220.00	Road x-in	g														
21+220	0.00	21+	601.00	381.0	0	0.00	000 1	.641	7.6	40 3	3.90	1.96	2.75	0.9	77 7.	818 0	.00090) ()	0.018
	I	21+	601.00	Comb. Ro	ad x-i	ng , Ch	neck , T.O	. # 15	L/S &	Headg	ate o	of Mai	n						
				Canal 2															
					-		100	FCC -	1 6 6	10 0	<u></u>	1 0 1	b 60		1117	200 0		<u>م ا</u> ۱	0 010

	21+970.00	0.00 Comb. Road x-ing , Check and Headgate of Main Canal											
		3											
21+970.00	22+772.00	802.00	0.0000	1.543	6.351	3.60	1.76	2.50	0.891	7.128	0.00090	0	0.018
	22+772.00	Road x-ing											
22+772.00	23+162.00	390.00	0.0000	1.543	6.351	3.60	1.76	2.50	0.891	7.128	0.00090	0	0.018
	23+162.00	Road x-ing											
23+162.00	23+433.00	271.00	0.0000	1.543	6.351	3.60	1.76	2.50	0.891	7.128	0.00090	0	0.018
	23+433.00	Road x-ing with	Drop										
23+433.00	23+587.00	154.00	0.0000	1.543	6.351	3.60	1.76	2.50	0.891	7.128	0.00090	0	0.018
	23+587.00	Road x-ing with	Drop										
23+587.00	24+045.00	458.00	0.0000	1.543	6.351	3.60	1.76	2.50	0.891	7.128	0.00090	0	0.018
	24+045.00	Comb. Road x-i	ng , Check I	Drop , T.O.	# 16 L/S	& Hea	dgate o	of Mair	i i				
		Canal 4											
24+045.00	24+80000	755.00	0.0000	1.526	6.135	3.50	1.75	2.45	0.876	7.006	0.00090	0	0.018
	24+800.00	Comb. Thresher	x-ing , Che	ck Drop & I	Headgate	of Mai	n Cana	I					
		5											
24+800.00	24+872.00	72.00	0.0000	1.516	6.024	3.50	1.72	2.45	0.868	6.942	0.00090	0	0.018
	24+872.00	Comb. Thresher	x-ing , Che	ck & Headg	gate of Ma	ain Can	al 6						

1.5.3.2. Related Canal Structures

Various kinds of related new canal structure are tabulated in Table 9.

Table 9: Canal Structures Link Canal 1

no.	Station		TypeofStructures
1	0+000.00		Intake of Link Canal 1
2	0+410.00		Steel Foot Bridge (w=1.00 m Existing)
3	0+460.00		Drainage Culvert
4	0+571.80		Spillway L/S - Existing
5	0+577.30	0+740.00	Closed Conduit (1-1.60 m. x 1.40 m Existing)
6	0+830.00		Slab Foot Bridge (w=2.50 m Existing)
7	0+900.00		Turnout # 1 L/S
8	0+930.00	1+075.00	Closed Conduit (1-1.60 m. x 1.40 m Existing)
9	1+140.00		Comb. Road crossing, Check & Headgate of N.E. Lateral
10	1+285.00		Road crossing -
11	1+340.00		Drainage Culvert - Existing
12	1+500.00		Turnout # 2 R/S
13	1+600.00		Road crossing -
14	1+700.00		Turnout # 3 L/S
15	2+270.00		Check Structure with Turnout # 4 L/S & Turnout # 5 R/S
16	2+650.00		Turnout # 6 L/S
17	2+940.00		Check Structure with Turnout # 7 L/S
18	3+048.00		Drainage Culvert
19	3+430.00		Road crossing
20	3+480.00		Drainage Culvert
21	3+650.00		Turnout # 8 L/S & Turnout # 9 R/S
22	4+000.00		Turnout # 10 L/S
23	4+300.00		Turnout # 11 L/S
24	4+550.00		Drainage Culvert
25	4+743.00		Road crossing with
26	5+188.00		Road crossing
27	5+330.00		Turnout # 12 L/S & Turnout # 13 R/S
28	5+435.00		Turnout # 14 L/S
29	5+632.00		Road crossing with
30	5+750.00		Turnout # 15 L/S

no.	Station		TypeofStructures
31	6+000.00		Check Structure with Turnout # 16 L/S
32	6+200.00		Drainage Culvert
33	6+785.00		Drainage Culvert
34	7+352.00		Drainage Culvert
35	7+700.00		Road crossing
36	7+856.00		Drainage Culvert
37	8+300.00		Inclined Drop
38	8+656 54		Road crossing with
39	9+056.28		
40	10+085.4		
40	10+385.2		Road crossing
41	10+505.2		Road crossing
42	10+057.2		Road crossing
43	11+102.2		Road crossing with Check & Turnout #171/S to sorve Pana Left Main Canal
44	11+192.2		Pana Left Main Canal crossing
45	11+197.7	11,5767	Fapa Left Main Canal Crossing
40	11+395.0	11+5/0./	Signoff with Road crossing at milet fransition
4/	12+129.5		Check Structure with Furnout # 16 L/S to Serve Papa Kight Main Canal
48	12+139.5		Papa Kight Ivlain Canal Crossing
49	12+443.5		Koad crossing
50	12+481.6		Koad crossing
51	12+955.0		KOad crossing
52	12+967.4		Existing Canal crossing
53	13+379.8		Road crossing
54	13+416.0		Drainage Culvert
55	13+785.1		Road crossing
56	13+970.0		Drainage Culvert
57	14+541.1		Road crossing
58	15+089.4		Road crossing
59	15+838.0		Existing Canal crossing
60	15+850.0		Road crossing
61	16+082.0		Drainage Culvert
62	16+257.8		Road crossing
63	16+450.0		Drainage Culvert
64	17+350.0		Drainage Culvert
65	17+675.0		Existing Canal crossing
66	17+868.9		Road crossing
67	18+359.8		Check Structure with Turnout # 19 L/S to serve Madongan Left Main Canal
68	18+379.8		Madongan Left Main Canal
69	18+983.4	19+375.0	Siphon
70	19+625.0		Madongan Right Main Canal crossing
71	19+635.9		Road crossing with Check & Turnout # 20 L/S to serve Madongan Right
72	19+663.2		Existing Canal crossing
73	19+672.1		Road crossing
74	20+059.9		Road crossing
75	20+068.4		Existing Canal crossing
76	20+528.0		Drainage Culvert
77	24+612.0		Road crossing
78	25+383.5		Drainage Culvert
79	26+291.0		Drainage Culvert
80	27+935.7		Drainage Culvert
81	28+500.0		Drainage Culvert
87	29+210.0		Drainage Culvert
83	30+336.0		Drainage Culvert
84	30+548 3		Existing Canal crossing
85	30+702.2		Existing Canal crossing
88	30+772 2		Existing Canal crossing
00 Q7	30+773.2		Drainage Cultert
07	2/1170 1		
ðð 00	34+1/8.1		Dramage Curvert
89	34+888.5		Road crossing

no.	Station		TypeofStructures
90	35+013.3		Existing Canal crossing
91	35+046.7		Solsona Left Main Canal crossing
92	35+056.7		Check Structure with Turnout # 21 L/S to serve Solsona Left Main Canal
93	35+465.0	35+719.0	Siphon with Road crossing at Inlet & Outlet Transition
94	35+731.9		Solsona Right Main Canal
95	35+741.9		Check Structure with Turnout # 22 L/S to serve Solsona Right Main Canal
96	35+848.4		Existing Canal crossing
97	36+000.0		Road crossing
98	36+078.8		Existing Canal crossing
99	36+171.5		Existing Canal crossing
10	36+464.1		Road crossing
10	37+000.0		Road crossing
10	37+225.0		Existing Canal crossing
10	37+443.3		Road crossing
10	37+785.0		Road crossing
10	37+818.4		Existing Canal crossing
10	37+832.3		Existing Canal crossing
10	38+395.3		Thresher crossing with Check to serve Labugaon Main

Link Canal 2 and 3

no.	Station		TypeofStructures
1	0+000.00		Intake of Link Canal 2 & 3
2	0+300.00	0+900.00	Closed Conduit
3	0+975.00		Turnout # 1 L/S
4	1+000.00		Combined Thresher crossing, Check and Headgate of Lateral 1
5	1+658.00		Combined Road crossing with Check Drop and Turnout # 2 L/S
6	1+800.00	2+400.00	Chute Structure
7	2+950.00		Turnout # 3 L/S
8	3+040.00		Drainage Culvert
9	3+470.00		Road crossing
10	3+495.00		Road crossing
11	3+941.00		Combined Road crossing, Check and Headgate of Lateral 2
12	5+100.00		Turnout # 4 L/S
13	5+238.00		Road crossing
14	6+089.00		Road crossing
15	6+426.00		Road crossing with Check and Turnout # 5 L/S
16	6+850.00		Combined Thresher crossing, Check , Turnout # 6 L/S and Headgate of
			Lateral 3
17	7+350.00		Check Structure with Turnout # 7 L/S
18	7+700.00	8+400.00	Chute Structure
19	8+500.00		Thresher crossing with Check and Turnout #8 L/S & Turnout # 9
20	10+100.00		Thresher crossing with Drop
21	10+500.00	11+200.0	Chute Structure
22	11+300.00		Thresher crossing with Inclined Drop
23	11+600.00		Inclined Drop
24	12+100.00		Inclined Drop
25	12+860.00	13+014.0	Elevated Flume
26	14+200.00	14+319.0	Elevated Flume
27	14+500.00		Thresher crossing with Check Drop and Turnout # 10 L/S
28	14+900.00		Check Drop with Turnout # 11 L/S & Turnout # 12 R/S
29	15+910.00		Road crossing with Drop

no.	Station		TypeofStructures
30	15+934.00		Drainage Culvert
31	16+100.00		Inclined Drop with Check and Turnout #13 R/S & Turnout # 14 L/S
32	16+800.00		Inclined Drop
33	17+476.00		Drainage Culvert
34	17+600.00		Thresher crossing
35	18+500.00		Combined Thresher crossing with Check and Headgate of Main Canal 1
36	18+530.00	18+670.0	Elevated Flume with Slab Bridge @ Sta. 18+650.00
37	19+850.00		Thresher crossing
38	20+420.00		Drainage Culvert
39	21+033.00		Road crossing
40	21+220.00		Road crossing
41	21+601.00		Combined Road crossing, Check, Turnout # 15 R/S and Headgate of
			Canal 2
42	21+970.00		Combined Road crossing, Check and Headgate of Lateral
43	22+772.00		Road crossing
44	23+162.00		Road crossing
45	23+433.00		Road crossing with Drop
46	23+587.00		Road crossing with Drop
47	24+045.00		Combined Road crossing, Check, Turnout # 16 L/S and Headgate of
			Canal 4
48	24+800.00		Combined Thresher crossing, Check and Headgate of Main Canal
49	24+872.00		Combined Thresher crossing, Check and Headgate of Main Canal

1.6 PROJECT PHASES AND TIMETABLE

Additional geological and geotechnical study is the recourse after an in-depth EGGA discovered, with the concurrence by NIA, that the proposed damsites are unsound. If this additional study could be started week-1 of Jan. 2020 and completed week-4 of Jul. 2020, then the SEIA can resume then completed maybe in week-4 of Dec. 2020.

Assumed no further respite, this shall be followed by a 2-year "preparation and detailed engineering design period" (week-1 Jan. 2021-week-4 Dec. 2022). Then this shall be followed by a 6-year "project construction period" with a 1-year preliminary (procurement) period—hence, shall cover week-1 Jan. 2023 to week-4 Dec. 2029).

The 1st 5 years of the subsequent system operations phase (week-1 Jan. 2030-week-4 Dec. 2034) shall be earmarked for the advocated Agricultural Development Stage (ADS) to shore-up project success. During the ADS, NIA shall spearhead program convergence of all the agri-supporting institutions into the service area to tackle existing and emergent production constraints.

The improvement in cropping intensity and crop yield shall have been achieved starting week-1 Jan. 2035, as the cut-in year for agricultural development.

1.7 SCREENING OF ENVIRONMENTAL ASPECTS, IMPACTS, AND RISKS

The screening of environmental aspects, impacts, and risks is used for focusing, levelling, and endpoints of the more relevant information for the EIS. This is also used in the listing of the stakeholders for public participation.

During pre-construction, no physical activity will be done; IEC activities and dialogues with the community will be done instead. Another activity during the pre-construction phase is the acquisition of ROW.

The main concerns during the construction phase is the possible accidents, noise, and emissions from vehicles brought about by project vehicles and equipment passing through barangays. Construction of new roads will require land clearing, excavation, and concreting, which will cause vegetation removal, increase in noise, excessive dust emissions during dry periods, and excessive soil erosion during rainy periods with increase in the total suspended solids in nearby bodies of water. Other risks include damage to poorly constructed road segments, as well as spillage of fuel and oil at the equipment staging or maintenance area. Clearing, earth excavation, and equipment staging works will also be done at the dam sites. This may result in increased soil erosion.

Another major component of the Project is the construction of proposed lined canals. This would also require clearing, earth excavation, and equipment staging works which may result to increase in soil erosion.

The main environmental aspect during the operation phase of the Project is the increase in fertilizer and agro-chemical use brought about by the year-round availability of irrigation waters. Increased use of these chemicals may have adverse effects on groundwater quality. The main environmental risk is dam failure, which will cause flood wave—that could result in damages and casualties.

PROJECT	LAND	WATER	AIR	PEOPLE	MEASURES
1. ROW acquisition for proposed access roads, irrigation canals, staging area, base camp, spoil disposal site	Possible change in land use			Loss of property, Income in the proposed project areas Possible displacement of local residents	
2. Land use permit/authority acquisition for the dumpsite, irrigation canals, staging area, basecamp, spoil disposal site					
3. Construction of dam, irrigation canals, and support facilities					
3.1. Land clearing for construction	Loss of vegetation	Increase in TSS and	Insignificant and		Collection of cut wood for

Table 10: Environmental Considerations

of proposed dam and support facilities	Disturbance to wildlife Loss of topsoil Increase in soil erosion potential	browning of nearby bodies of water especially during wet season	localized increase in criteria air pollutants and noise from the operation of heavy equipment	use Replacement planting
3.2. Excavations in and along the proposed dam and support facilities	Loss of vegetation Disturbance to wildlife Loss of topsoil Increase in soil erosion potential	TSS and browning of nearby bodies of water especially during wet season	Intermittent, sudden, and localized increase in TSP during dry season Insignificant and localized increase in criteria air pollutants and noise from the operation of heavy equipment	Designation of spoil disposal area Immediate hauling of excavated materials to designated spoil disposal area
3.3. Disposal of excavated materials to spoil disposal area	Localized change in slope and topography Increase in soil erosion potential	Increase in TSS and browning of nearby bodies of water especially during wet season	Intermittent, sudden, and localized increase in TSP during dry season	Install erosion control measures in disposal area
3.4. Stockpiling of construction concreting materials (gravel and sand)	Increase in soil erosion potential	Increase in TSS and browning of nearby bodies of water especially during wet season	Intermittent, sudden, and localized increase in TSP during dry season	
3.5. Filling of rock materials at dam site	Increase in soil erosion potential Reduction of land area	Increase in TSS of nearby bodies of water	Intermittent, sudden, and localized increase in TSP during dry season	Use of cofferdam

3.6. Concreting	for wildlife Submersion of trees Reduction	Increase in water level of river upstream of dam site Intermittent			
of dam	of land area for wildlife	water coloration			
4. Operations of construction support facilities					
4.1. Use of unpaved access roads	Increase in littered soil along paved road during wet season	Increase in TSS and browning of nearby bodies of water especially during wet season	Intermittent, sudden, and localized increase in TSP during dry season Intermittent and localized increase in noise levels	Intermittent reduction in traffic flow Risk of road accident	Provision of tire wash area Use of water spray during dry season Implementation of traffic safety plan
4.2. Use of generator sets in project sites			Localized increase in criteria pollutants and noise		
4.3. On-site refueling of vehicles	Risk of fuel spillage	Risk of fuel spillage			Compliance with RA 6969
4.4. On-site maintenance of heavy equipment	Risk of oil spill Increase in the local solid waste	Risk of oil spill			Compliance with RA 6969 and RA 9275
4.5. Use of basecamp	Increase in the local solid waste	Insignificant increase of human sewage loading into nearby bodies of water			Compliance with RA 6969 and RA 9275
5. Demobilization works	Increase in solid waste			Risk of road accidents	Compliance with RA 9003 Implementation

				of traffic safety
				plan
6. Operations				
6.1. Maintenance	Decrease in	Opportunity	Opportunity	
of dam reservoir	the land	for fisheries	for additional	
water level	area for	industry	income from	
	wildlife		fishery	
		Increase in	projects and	
	Localized	fish	local tourism	
	migration of	population		
	wildlife			
	Opportunity			
	for local			
	tourism			
	(e.g.			
	tours			
6.2 Supply of		Competition	Increased	
water to	the	in water use	income for	
irrigation	frequency	in water use	locals	
networks	of land for	Increase in	locals	
	agricultural	loading of		
	production	fertilizers		
		and		
	Change in	pesticides		
	ecology			
	during dry			
	season			
6.3. Dam site	Increase in	Insignificant		
office use	the local	increase in		
	solid waste	human		
		sewage		
		loading into		
		nearby		
		bodies of		
		water		